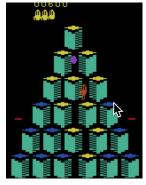
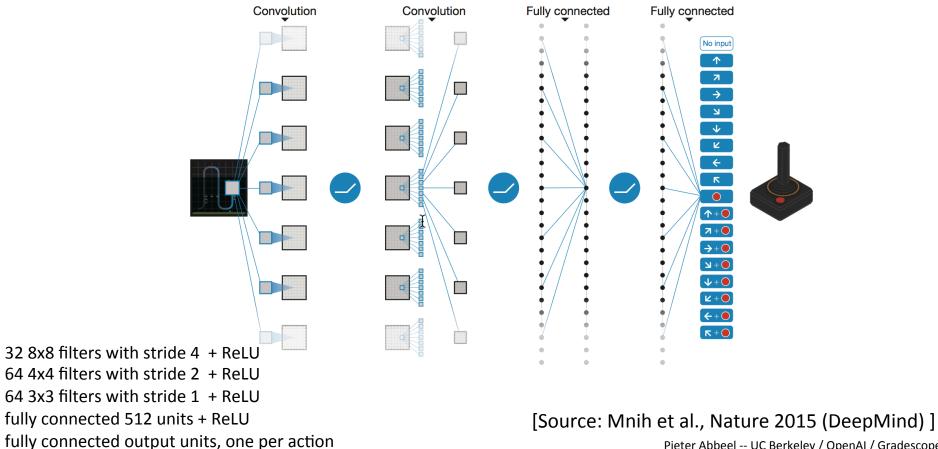

Deep Reinforcement Learning for Robotics Pieter Abbeel UC Berkeley / OpenAI / gradescope.com [code: ICML2016]

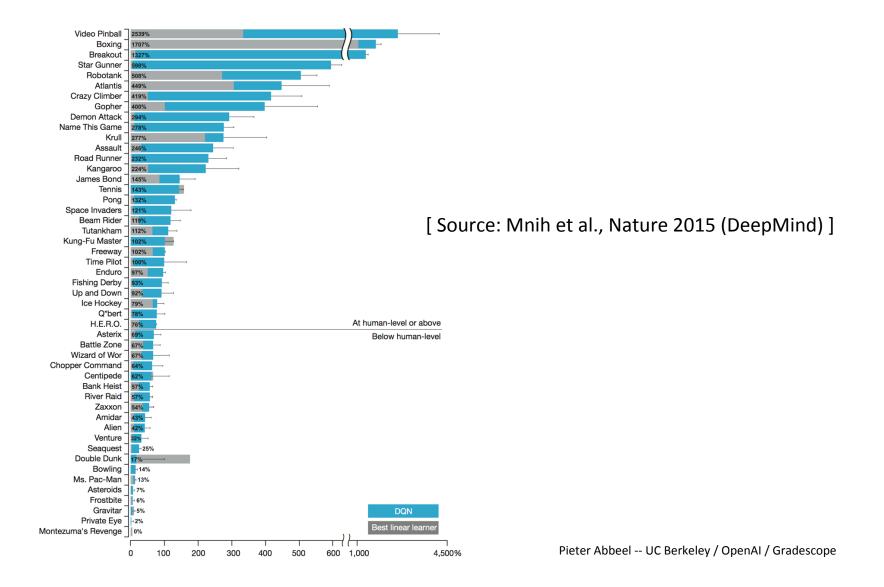
Deep Reinforcement Learning (RL)

From Pixels to Actions?



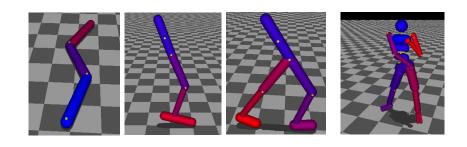
Enduro

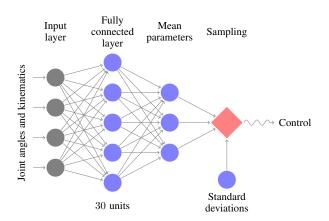



Beamrider

Q*bert

Deep Q-Network (DQN): From Pixels to Joystick Commands




How About Continuous Control, e.g., Locomotion?

Robot models in physics simulator (MuJoCo, from Emo Todorov)

Input: joint angles and velocities Output: joint torques

Neural network architecture:

Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

Challenges with Q-Learning

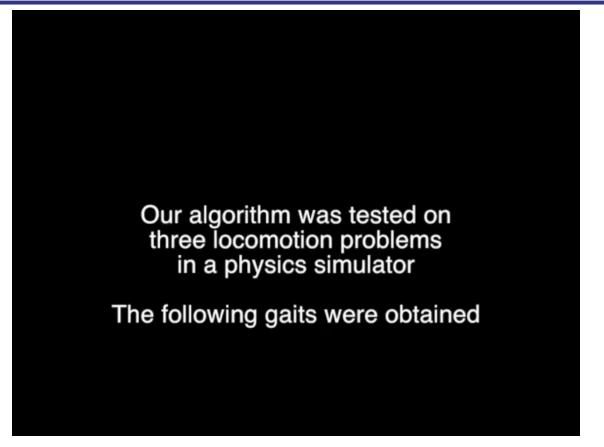
- How to score every possible action?
- How to ensure monotonic progress?

Policy Optimization

$$\max_{\theta} \quad \mathbf{E}[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}]$$

- Often simpler to represent good policies than good value functions
- True objective of expected cost is optimized (vs. a surrogate like Bellman error)
- Existing work: (natural) policy gradients
 - Challenges: good, large step directions

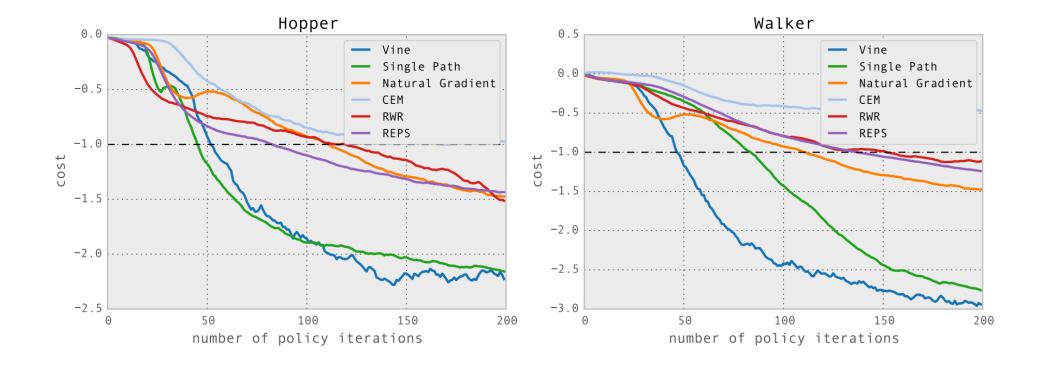
Trust Region Policy Optimization


[Schulman, Levine, Moritz, Jordan, Abbeel, 2015] $\max_{\theta} E[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}]$ $\hat{T}(0 + S0)$

$$\max_{\substack{\delta\theta}} L(\theta + \delta\theta)$$

s.t. KL $(P(\tau; \theta) || P(\tau; \theta + \delta\theta)) \le \varepsilon$

• \hat{L} : Surrogate Objective


 $\blacksquare KL$: Trust region

Experiments in Locomotion

Pieter Abbeel -- (Schulenyanpehevine) -- Ange

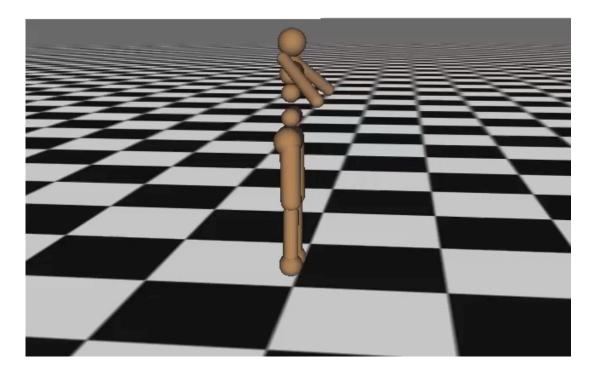
Learning Curves -- Comparison

Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

Generalized Advantage Estimation (GAE)

Objective:
$$\max_{\theta} E[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}]$$

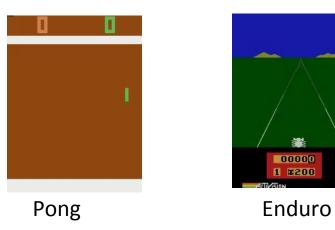
Gradient:
$$\operatorname{E}\left[\sum_{t=0}^{H} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \left(\sum_{k=t}^{H} R(s_k) - V(s_t)\right)\right]$$


single sample estimate of advantage

- Generalized Advantage Estimation
 - Exponential interpolation between actor-critic and Monte Carlo estimates
 - Trust region approach to (high-dimensional) value function estimation

[Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

Learning Locomotion through Trust Region Policy Optimization (TRPO)


Iteration 0

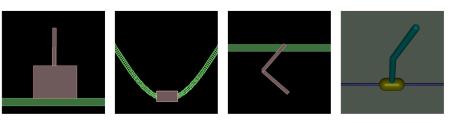
[Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]


Atari Games

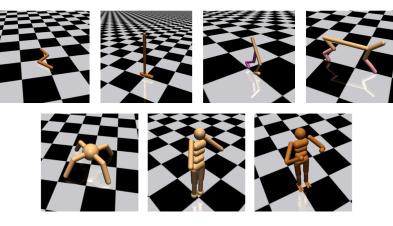
- Deep Q-Network (DQN) [Mnih et al, 2013/2015]
- Dagger with Monte Carlo Tree Search [Xiao-Xiao et al, 2014]
- Trust Region Policy Optimization [Schulman, Levine, Moritz, Jordan, Abbeel, 2015]
- A3C [Mnih et al., 2016]

Beamrider

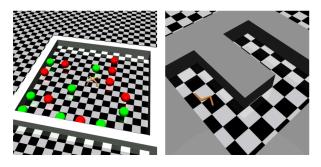
Q*bert


Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

Deep RL Benchmarking


- Tasks
- Algorithms
- Experimental setup

Deep RL Benchmarking -- Tasks


1. Basic tasks

2. Locomotion

3. Hierarchical

4. Partially observable

sensing, delayed action, sysID

5. Driving...

Deep RL Benchmarking -- Algorithms

- Reinforce
- Truncated Natural Policy Gradient
- Reward-Weighted Regression (RWR)
- Relative Entropy Policy Search (REPS)
- Trust-Region Policy Optimization (TRPO)
- Cross-Entropy Method (CEM)
- Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
- Deep Deterministic Policy Gradients (DDPG)
- ...

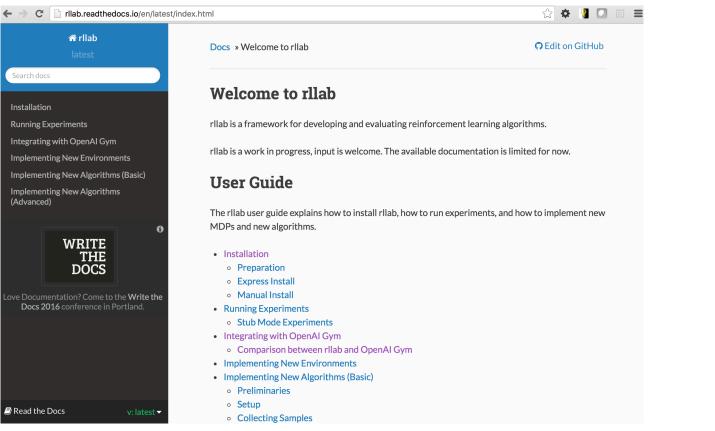
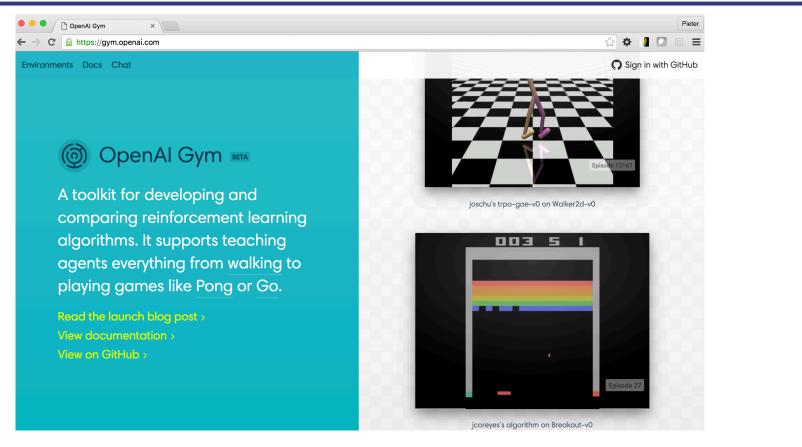

Benchmarking [Duan et al, ICML 2016]

Table 1. Performance of the implemented algorithms in terms of average return over all training iterations for five different random seeds (same across all algorithms). The results of the best-performing algorithm on each task are highlighted in boldface. In the tasks column, the partially observable variants of the tasks are annotated as follows: LS stands for limited sensors, NO for noisy observations and delayed actions, and SI for system identifications. The notation N/A denotes that an algorithm has failed on the task at hand, e.g., CMA-ES leading to out-of-memory errors in the Full Humanoid task.

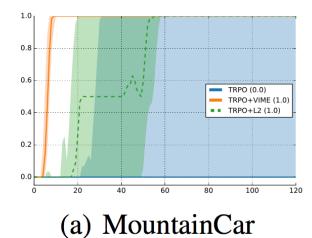

$ \begin{array}{c} Cart-Pole Balancing Inverted Pendulum6 & 71.1 \pm 0.0 & 4693.7 \pm 14.0 & 3986.4 \pm 748.9 & 4861.5 \pm 12.3 & 565.6 \pm 137.6 & 4869.8 \pm 37.6 & 4815.4 \pm 4.8 & 2440.4 \pm 568.3 & -401.1 \pm 5.7 & -415.4 \pm 0.0 & -568.1 \pm 01.0 & -568.5 \pm 4.5 & -79.4 \pm 1.1 & -276.6 \pm 166.3 & -661.2 \pm 2.4 & -458.5 \pm 7.7 & -438.8 \pm 1.4 & -726.6 \pm 163.6 & -661.2 \pm 2.4 & -458.5 \pm 7.7 & -438.8 \pm 1.4 & -7276.6 \pm 163.8 & -326.0 \pm 2.4.4 & -456.0 \pm 2.4 & -458.6 \pm 7.7 & -438.8 \pm 1.4 & -7276.6 \pm 163.8 & -436.7 \pm 174.6 & -436.8 \pm 1.4 & -7278.6 \pm 163.1 & -446.7 \pm 114.8 & -4412.4 \pm 0.4 & -256.2 \pm 17.8 & -436.8 \pm 1.4 & -77.8 & -456.6 \pm 137.6 & -661.2 \pm 2.4 & -436.8 \pm 1.4 & -77.8 & -78.6 \pm 133.1 & -78.6 \pm 163.1 & -78.2 \pm 10.6 & -78.7 \pm 8.6 & -78.7 \pm 8.6 & -78.7 \pm 8.6 & -78.7 \pm$	Task	Random	VPG	TNPG	RWR	REPS	TRPO	CEM	CMA-ES
Montain Car -4154 ± 0.0 -67.1 ± 1.0 -66.5 ± 4.5 -77.4 ± 1.1 -275.6 ± 166.3 -61.7 ± 0.0 -66.5 ± 2.4 -85.0 ± 7.7 Acrobot -104.5 ± 1.0 -508.1 ± 91.0 -508.5 ± 12.2 -335.2 ± 3.2 -326.0 ± 24.4 -435.6 ± 12.7 -457.6 ± 13.1 Double Inverted Pendulum 114.7 ± 0.1 4116.5 ± 65.2 4455.4 ± 37.6 3614.8 ± 368.1 446.7 ± 114.8 4412.4 ± 50.4 -256.6 ± 2.4 -457.6 ± 13.1 Swimmer* -1.7 ± 0.1 92.3 ± 0.1 96.0 ± 0.2 60.7 ± 5.5 3.8 ± 3.3 96.0 ± 0.2 68.8 ± 2.4 64.9 ± 1.4 LDWalker -1.7 ± 0.0 $506.5\pm7.8.8$ $1382.6\pm10.8.2$ 136.0 ± 15.9 -37.0 ± 38.1 1383.3 ± 150.0 63.1 ± 7.8 20.3 ± 14.3 LWKer -1.7 ± 0.7 548.3 ± 55.5 $706.\pm12.7$ 37.6 ± 3.1 39.0 ± 9.8 730.2 ± 61.3 49.2 ± 5.9 17.8 ± 15.5 Simple Humanoid 13.2 ± 0.1 214.4 ± 35.0 227.6 ± 3.1 36.8 ± 1.0 906.2 ± 7.2 80.8 ± 2.4 64.9 ± 1.4 Lur Pole Balancing (LS)* 77.1 ± 0.0 -287.5 ± 5.0		77.1 ± 0.0							2440.4 ± 568.3
$ \begin{array}{c} \mbox{Acrobit} \\ \mbox{Daube Inverted Pendulum}^* & -1.94.5 \pm 1.0 \\ \mbox{Hoper} & -1.001.5 \pm 10.8 \\ \mbox{Hoper} & -1.01.5 \pm 10.8 \\ \mbox{Hoper} & -1$	Inverted Pendulum*	-153.4 ± 0.2			84.7 ± 13.8		247.2 ± 76.1	38.2 ± 25.7	-40.1 ± 5.7
Double Inverted Pendulum* 149.7 ± 0.1 4116.5 ± 65.2 4455.4 ± 37.6 3614.8 ± 368.1 446.7 ± 114.8 4412.4 ± 50.4 2566.2 ± 178.9 1576.1 ± 51.3 Swimmer* -1.7 ± 0.1 92.3 ± 0.1 96.0 ± 0.2 60.7 ± 5.5 3.8 ± 3.3 96.0 ± 0.2 68.8 ± 2.4 64.9 ± 1.4 Hopper 8.4 ± 0.0 714.0 ± 29.3 1155.1 ± 57.9 136.0 ± 10.9 86.7 ± 17.6 1138.3 ± 150.0 63.1 ± 7.8 20.3 ± 14.3 2D Walker -1.7 ± 0.0 506.5 ± 78.8 1382.6 ± 10.8 ± 21.9 77.1 ± 24.3 77.1 ± 24.3 30.4 ± 75.5 36.8 ± 4.0 97.0 ± 6.1.3 492.5 ± 9 17.8 ± 15.5 Simple Humanoid 13.2 ± 0.1 214.4 ± 35.0 282.9 ± 19.8 42.3 ± 3.4 45.5 ± 4.1 455.9 ± 22.8 104.0 ± 120.1 30.4 ± 7.5 98.8 ± 11.5 115.9 ± 2.7 Pull Humanoid 13.2 ± 0.1 214.4 ± 35.0 282.9 ± 19.8 42.3 ± 3.4 45.5 ± 4.1 455.9 ± 22.8 104.0 ± 14.4 NA ± N/A Cart-Pole Balancing (LS)* 77.1 ± 0.0 420.9 ± 265.5 945.1 ± 27.8 68.9 ± 1.5 898.1 ± 22.1 960.2 ± 6	Mountain Car	-415.4 ± 0.0	-67.1 ± 1.0	-66.5 ± 4.5		-275.6 ± 166.3		-66.0 ± 2.4	-85.0 ± 7.7
Swimmer* Hopper 1 Hopper -1.7 ± 0.1 8.4 ± 0.0 92.3 ± 0.1 1155.1 ± 57.9 553.2 ± 71.0 1155.1 ± 57.9 553.2 ± 71.0 553.2 ± 71.0 $567.\pm 17.6$ 1183.3 ± 150.0 1183.3 ± 150.0 1183.1 ± 102.1 133.2 ± 0.3 1183.1 ± 102.1 133.2 ± 0.3 118.3 ± 102.2 118.3 ± 10.3 118.3 ± 10.3 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
Hopper 2DWalker8.4 \pm 0.0714.0 \pm 29.31155.1 \pm 57.9553.2 \pm 71.086.7 \pm 17.61183.3 \pm 150.063.1 \pm 7.820.3 \pm 14.3Half-Cheetah-90.8 \pm 0.31183.1 \pm 69.21729.5 \pm 184.6376.1 \pm 28.234.5 \pm 38.11383.5 \pm 85.084.5 \pm 9.277.1 \pm 24.3Kimple Humanoid13.4 \pm 0.7548.3 \pm 55.5706.0 \pm 127.737.6 \pm 3.139.0 \pm 9.8730.2 \pm 61.349.2 \pm 5.917.8 \pm 15.5Full Humanoid13.2 \pm 0.1214.4 \pm 35.0282.9 \pm 19.842.3 \pm 3.445.5 \pm 4.1455.9 \pm 22.8104.0 \pm 120.1Cart-Pole Balancing (LS)*-77.1 \pm 20.3-77.4 \pm 24.3-77.4 \pm 24.3-77.4 \pm 24.3-77.4 \pm 24.3Mourtain Car (LS)-122.1 \pm 0.1-13.4 \pm 3.20.7 \pm 6.1 \pm 27.868.9 \pm 1.5898.1 \pm 22.1960.2 \pm 46.0227.0 \pm 227.0 \pm 223.068.0 \pm 1.6Inverted Pendulum (LS)-122.1 \pm 0.1-13.4 \pm 3.20.7 \pm 6.1 \pm 0.7 \pm 6.1 \pm 0.2-87.2 \pm 8.04.5 \pm 4.1-81.2 \pm 33.2-62.4 \pm 3.4Inverted Pendulum (NO)*-122.2 \pm 0.1616.0 \pm 210.8916.3 \pm 23.093.8 \pm 1.299.6 \pm 7.2606.2 \pm 122.2181.4 \pm 32.1104.4 \pm 16.0Inverted Pendulum (NO)*-128.9 \pm 1.111.5 \pm 5.5-110.0 \pm 1.4-119.3 \pm 4.2104.4 \pm 2.2-55.6 \pm 16.7-68.3 \pm 2.8Mourtain Car (NO)*-101.4 \pm 0.2-63.5 \pm 8.6-81.7 \pm 0.1-82.9 \pm 0.1-85.3 \pm 9.9-149.5 \pm 1.4-73.5 \pm 0.5 <th>Double Inverted Pendulum*</th> <th>149.7 ± 0.1</th> <th>4116.5 ± 65.2</th> <th>4455.4 ± 37.6</th> <th>3614.8 ± 368.1</th> <th>446.7 ± 114.8</th> <th>4412.4 ± 50.4</th> <th>2566.2 ± 178.9</th> <th>1576.1 ± 51.3</th>	Double Inverted Pendulum*	149.7 ± 0.1	4116.5 ± 65.2	4455.4 ± 37.6	3614.8 ± 368.1	446.7 ± 114.8	4412.4 ± 50.4	2566.2 ± 178.9	1576.1 ± 51.3
Hopper 2DWalker8.4 \pm 0.0714.0 \pm 29.31155.1 \pm 57.9553.2 \pm 71.086.7 \pm 17.61183.3 \pm 150.063.1 \pm 7.820.3 \pm 14.3Half-Cheetah-90.8 \pm 0.31183.1 \pm 69.21729.5 \pm 184.6376.1 \pm 28.234.5 \pm 38.11383.5 \pm 85.084.5 \pm 9.277.1 \pm 24.3Kimple Humanoid13.4 \pm 0.7548.3 \pm 55.5706.0 \pm 127.737.6 \pm 3.139.0 \pm 9.8730.2 \pm 61.349.2 \pm 5.917.8 \pm 15.5Full Humanoid13.2 \pm 0.1214.4 \pm 35.0282.9 \pm 19.842.3 \pm 3.445.5 \pm 4.1455.9 \pm 22.8104.0 \pm 120.1Cart-Pole Balancing (LS)*-77.1 \pm 20.3-77.4 \pm 24.3-77.4 \pm 24.3-77.4 \pm 24.3-77.4 \pm 24.3Mourtain Car (LS)-122.1 \pm 0.1-13.4 \pm 3.20.7 \pm 6.1 \pm 27.868.9 \pm 1.5898.1 \pm 22.1960.2 \pm 46.0227.0 \pm 227.0 \pm 223.068.0 \pm 1.6Inverted Pendulum (LS)-122.1 \pm 0.1-13.4 \pm 3.20.7 \pm 6.1 \pm 0.7 \pm 6.1 \pm 0.2-87.2 \pm 8.04.5 \pm 4.1-81.2 \pm 33.2-62.4 \pm 3.4Inverted Pendulum (NO)*-122.2 \pm 0.1616.0 \pm 210.8916.3 \pm 23.093.8 \pm 1.299.6 \pm 7.2606.2 \pm 122.2181.4 \pm 32.1104.4 \pm 16.0Inverted Pendulum (NO)*-128.9 \pm 1.111.5 \pm 5.5-110.0 \pm 1.4-119.3 \pm 4.2104.4 \pm 2.2-55.6 \pm 16.7-68.3 \pm 2.8Mourtain Car (NO)*-101.4 \pm 0.2-63.5 \pm 8.6-81.7 \pm 0.1-82.9 \pm 0.1-85.3 \pm 9.9-149.5 \pm 1.4-73.5 \pm 0.5 <th>Swimmer*</th> <td>-1.7 ± 0.1</td> <td>92.3 ± 0.1</td> <td>96.0± 0.2</td> <td>60.7 ± 5.5</td> <td>3.8 ± 3.3</td> <td>96.0± 0.2</td> <td>68.8 ± 2.4</td> <td>64.9 ± 1.4</td>	Swimmer*	-1.7 ± 0.1	92.3 ± 0.1	96.0± 0.2	60.7 ± 5.5	3.8 ± 3.3	96.0± 0.2	68.8 ± 2.4	64.9 ± 1.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
Half-Cheenah -90.8 ± 0.3 1183.1 ± 69.2 1729.5 ± 184.6 376.1 ± 28.2 34.5 ± 38.0 1914.0 ± 120.1 330.4 ± 274.8 441.3 ± 107.6 An* 548.3 ± 55.5 706.0 ± 127.7 37.6 ± 3.1 39.0 ± 9.8 730.2 ± 61.3 $492.2 5.9$ 41.3 ± 107.6 Simple Humanoid 11.2 ± 0.1 214.4 ± 35.0 282.9 ± 19.8 42.3 ± 3.4 45.5 ± 4.1 455.9 ± 22.8 104.0 ± 14.5 $N/A \pm N/A$ Cart-Pole Balancing (LS)* 77.1 ± 0.0 420.9 ± 265.5 945.1 ± 27.8 68.9 ± 1.5 898.1 ± 22.1 960.2 ± 46.0 227.0 ± 223.0 68.0 ± 1.6 Inverted Pendulum (LS) -122.1 ± 0.1 -13.4 ± 3.2 0.7 ± 6.1 -107.4 ± 0.2 -87.2 ± 8.0 4.5 ± 4.1 -81.2 ± 33.2 -62.4 ± 3.4 Acrobot (LS)* -122.1 ± 0.1 -13.4 ± 3.2 0.7 ± 6.1 -107.4 ± 0.2 -87.2 ± 8.0 4.5 ± 4.1 -81.2 ± 33.2 -62.4 ± 3.4 Cart-Pole Balancing (NO)* -122.1 ± 0.1 -13.4 ± 3.2 $0.7 \pm 6.5 \pm 3.3$ -379.5 ± 1.4 -83.3 ± 9.9 -149.5 ± 15.3 Inverted Pendulum (NO) -122.2 ± 0.1 616.0 ± 210.8 916.3 ± 23.0 93.8 ± 1.2 99.6 ± 7.2 606.2 ± 122.2 181.4 ± 32.1 104.4 ± 16.0 Inverted Pendulum (NO) -122.2 ± 0.1 616.5 ± 1.1 11.5 ± 0.5 -110.0 ± 1.4 -119.3 ± 4.2 10.4 ± 2.2 -55.6 ± 16.7 -80.3 ± 2.8 Mountain Car(NO)* -330.5 ± 0.0 -74.7 ± 7.8 -64.5 ± 13.4 -233.1 ± 0.4 -228.5 ± 14.0 -149.6 ± 8.6 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
An*13.4 \pm 0.7 648.3 ± 55.5 706.0 ± 127.7 37.6 ± 3.1 39.0 ± 9.8 730.2 ± 61.3 49.2 ± 5.9 17.8 ± 15.5 Simple Humanoid 41.5 ± 0.2 87.6 ± 2.3 276.6 ± 31.7 56.7 ± 3.8 36.8 ± 4.0 493.9 ± 75.5 98.8 ± 11.5 115.9 ± 2.7 Full Humanoid 13.2 ± 0.1 214.4 ± 35.0 282.9 ± 19.8 42.3 ± 3.4 45.5 ± 4.1 455.9 ± 22.8 104.0 ± 14.5 $NA \pm NA$ Cart-Pole Balancing (LS)* 77.1 ± 0.0 420.9 ± 265.5 945.1 ± 27.8 68.9 ± 1.5 898.1 ± 22.1 960.2 ± 46.0 227.0 ± 223.0 68.0 ± 1.6 Inverted Pendulum (LS) -122.1 ± 0.1 $-13.4 \pm 32.$ 0.7 ± 6.1 -107.4 ± 0.2 -87.2 ± 8.0 45.5 ± 4.1 -81.2 ± 33.2 -62.4 ± 3.4 Mountain Car (LS) -83.0 ± 0.0 -81.2 ± 30.6 -65.7 ± 9.0 -81.7 ± 0.1 -82.6 ± 0.4 -64.2 ± 9.5 -68.9 ± 1.3 -73.2 ± 0.6 Cart-Pole Balancing (NO)* 101.4 ± 0.1 616.0 ± 210.8 916.3 ± 23.0 93.8 ± 1.2 99.6 ± 7.2 606.2 ± 122.2 181.4 ± 32.1 104.4 ± 16.0 Inverted Pendulum (NO) -122.2 ± 0.1 615.5 ± 1.1 11.5 ± 0.5 -110.0 ± 1.4 -119.3 ± 4.2 10.4 ± 2.2 -55.6 ± 16.7 -80.3 ± 2.8 Acrobot (NO)* -393.5 ± 0.0 -74.7 ± 7.8 69.0 ± 2.8 702.4 ± 196.4 -98.3 ± 5.1 -104.5 ± 15.3 -129.9 ± 0.1 Inverted Pendulum (NO) -122.2 ± 0.1 616.3 ± 27.41 980.5 ± 7.3 60.0 ± 2.8 702.4 ± 196.4 <th>Half-Cheetah</th> <th>-90.8 ± 0.3</th> <th>1183.1 ± 69.2</th> <th></th> <th>376.1 ± 28.2</th> <th></th> <th></th> <th></th> <th>441.3 ± 107.6</th>	Half-Cheetah	-90.8 ± 0.3	1183.1 ± 69.2		376.1 ± 28.2				441.3 ± 107.6
Simple Humanoid 41.5 ± 0.2 87.6 ± 2.3 214.4 ± 35.0 276.6 ± 31.7 282.9 ± 19.8 56.7 ± 3.8 42.3 ± 3.4 36.8 ± 4.0 45.5 ± 4.1 493.9 ± 75.5 455.9 ± 22.8 98.8 ± 11.5 104.0 ± 14.5 115.9 ± 2.7 $N/A \pm N/A$ Cart-Pole Balancing (LS)* Inverted Pendulum (LS) -122.1 ± 0.1 77.1 ± 0.0 -128.0 ± 0.0 -380.2 ± 0.0 420.9 ± 265.5 -128.1 ± 2.1 -128.1 ± 0.6 -81.2 ± 0.6 945.1 ± 27.8 -65.7 ± 6.1 -107.4 ± 0.2 -235.9 ± 5.3 898.1 ± 22.1 -87.2 ± 8.0 -81.2 ± 0.6 -84.6 ± 2.9 960.2 ± 46.0 -87.2 ± 8.0 -81.2 ± 0.6 -64.2 ± 9.5 227.0 ± 223.0 -68.9 ± 1.3 -73.2 ± 0.6 -74.2 ± 3.4 68.0 ± 1.6 -84.6 ± 2.9 -235.9 ± 5.3 Cart-Pole Balancing (NO)* Inverted Pendulum (NO) Inverted Pendulum (NO) -122.2 ± 0.1 616.0 ± 210.8 -65.5 ± 1.1 11.5 ± 0.5 -74.7 ± 7.8 -64.5 ± 8.6 916.3 ± 23.0 -93.8 ± 1.2 -110.0 ± 1.4 99.6 ± 7.2 -110.0 ± 1.4 -119.3 ± 4.2 -10.4 ± 2.2 -65.6 ± 16.7 -65.2 ± 12.2 118.1 ± 32.1 101.4 ± 1.3 -74.7 ± 7.8 -64.5 ± 8.6 -81.7 ± 0.1 -233.1 ± 0.4 -258.5 ± 14.0 966.2 ± 122.2 -149.6 ± 8.6 -213.4 ± 6.3 -213.4 ± 6.3 -236.6 ± 6.2 Cart-Pole Balancing (SI)* Inverted Pendulum (SI) -393.5 ± 0.0 76.3 ± 0.1 -186.7 ± 31.3 916.3 ± 23.0 -146.5 ± 8.6 -164.5 ± 8.6 -81.7 ± 0.1 -223.1 ± 0.4 -228.5 ± 14.0 980.3 ± 5.1 -149.6 ± 8.6 -213.4 ± 6.3 71.6 ± 2.9 -236.6 ± 6.2 Cart-Pole Balancing (SI)* Inverted Pendulum (SI) -28.7 ± 0.0 -387.8 ± 1.0 -164.5 ± 5.6 431.7 ± 2									
$ \begin{array}{c} \text{Cart-Pole Balancing (LS)^{*}} & 77.1 \pm 0.0 \\ \text{Inverted Pendulum (LS)} & -132.1 \pm 0.1 \\ -132.1 \pm 0.1 \\ -393.2 \pm 0.0 \\ -393.2 \pm 0.0 \\ -393.2 \pm 0.0 \\ -128.9 \pm 11.6 \\ \end{array} \begin{array}{c} 420.9 \pm 265.5 \\ -15.4 \pm 3.2 \\ -65.7 \pm 9.0 \\ -84.6 \pm 2.9 \\ -235.9 \pm 5.3 \\ -235.9 \pm 5.3 \\ -379.5 \pm 1.4 \\ \end{array} \begin{array}{c} 960.2 \pm 46.0 \\ -84.5 \pm 4.1 \\ -84.5 \pm 4.1 \\ -84.5 \pm 4.1 \\ -84.3 \pm 9.9 \\ -149.5 \pm 15.3 \\ -164.2 \pm 9.5 \\ -84.3 \pm 9.9 \\ -149.5 \pm 15.3 \\ -164.2 \pm 9.5 \\ -150.8 \pm 1.5 \\ -150.9 \pm 7.5 \\ \end{array} \begin{array}{c} 668.9 \pm 1.5 \\ -88.3 \pm 9.9 \\ -149.5 \pm 12.2 \\ -83.3 \pm 9.9 \\ -149.5 \pm 15.3 \\ -164.5 \pm 15.3 \\ -150.8 \pm 12.2 \\ -150.8 \pm 11.6 \\ -88.3 \pm 9.9 \\ -149.5 \pm 15.3 \\ -150.9 \pm 7.5 \\ \end{array} \begin{array}{c} 668.9 \pm 1.6 \\ -84.3 \pm 9.9 \\ -149.5 \pm 15.3 \\ -150.9 \pm 7.5 \\ \end{array} \begin{array}{c} 666.2 \pm 122.2 \\ 181.4 \pm 32.1 \\ 104.4 \pm 16.0 \\ -149.5 \pm 15.3 \\ -150.9 \pm 7.5 \\ \end{array} \begin{array}{c} 104.4 \pm 16.7 \\ -80.3 \pm 2.8 \\ -81.7 \pm 0.1 \\ -82.9 \pm 0.1 \\ -82.9 \pm 0.1 \\ -60.2 \pm 2.0 \\ -60.2 \pm 2.0 \\ -67.4 \pm 1.4 \\ -73.5 \pm 0.5 \\ -213.4 \pm 6.3 \\ -236.6 \pm 6.2 \\ \end{array} $	Simple Humanoid	41.5 ± 0.2	87.6 ± 2.3	276.6 ± 31.7	56.7 ± 3.8	36.8 ± 4.0	493.9 ± 75.5	98.8 ± 11.5	115.9 ± 2.7
Inverted Pendulum (LS) -122.1 ± 0.1 -13.4 ± 3.2 0.7 ± 6.1 -107.4 ± 0.2 -87.2 ± 8.0 4.5 ± 4.1 -81.2 ± 33.2 -62.4 ± 3.4 Mountain Car (LS) -33.2 ± 0.0 -81.2 ± 0.6 -65.7 ± 9.0 -81.7 ± 0.1 -82.6 ± 0.4 -64.2 ± 9.5 -68.9 ± 1.3 -73.2 ± 0.6 -393.2 ± 0.0 -128.9 ± 11.6 -84.6 ± 2.9 -235.9 ± 5.3 -379.5 ± 1.4 -83.3 ± 9.9 -149.5 ± 15.3 -159.9 ± 7.5 Cart-Pole Balancing (NO)* 101.4 ± 0.1 616.0 ± 210.8 916.3 ± 23.0 93.8 ± 1.2 99.6 ± 7.2 606.2 ± 122.2 181.4 ± 32.1 104.4 ± 16.0 Inverted Pendulum (NO) -122.2 ± 0.1 6.5 ± 1.1 11.5 ± 0.5 -110.0 ± 1.4 -119.3 ± 4.2 10.4 ± 2.2 -55.6 ± 16.7 -80.3 ± 2.8 Mountain Car (NO) -333.5 ± 0.0 -74.7 ± 7.8 -64.5 ± 8.6 -81.7 ± 0.1 -82.9 ± 0.1 -60.2 ± 2.0 -67.4 ± 1.4 -735.5 ± 0.5 Cart-Pole Balancing (SI)* -333.5 ± 0.0 -186.7 ± 31.3 -164.5 ± 13.4 -233.1 ± 0.4 -258.5 ± 14.0 -149.6 ± 8.6 -213.4 ± 6.3 -236.6 ± 6.2 Cart-Pole Balancing (SI)* -63.2 ± 0.4 -53.3 ± 5.6 -164.5 ± 13.4 -233.1 ± 0.4 -258.5 ± 14.0 -149.6 ± 8.6 -213.4 ± 6.3 -236.6 ± 6.2 Cart-Pole Balancing (SI)* -63.2 ± 0.4 -63.9 ± 0.2 -66.4 ± 0.4 -63.9 ± 0.4 Acrobot (NO)* -387.8 ± 0.0 53.8 ± 0.6 -618.8 ± 0.4	Full Humanoid	13.2 ± 0.1	$214.4~\pm~~35.0$	$282.9~\pm~19.8$	42.3 ± 3.4	45.5 ± 4.1	$\textbf{455.9} \pm \textbf{ 22.8}$	104.0 ± 14.5	$N/A \pm N/A$
Inverted Pendulum (LS) -122.1 ± 0.1 -13.4 ± 3.2 0.7 ± 6.1 -107.4 ± 0.2 -87.2 ± 8.0 4.5 ± 4.1 -81.2 ± 33.2 -62.4 ± 3.4 Mountain Car (LS) -33.2 ± 0.0 -81.2 ± 0.6 -65.7 ± 9.0 -81.7 ± 0.1 -82.6 ± 0.4 -64.2 ± 9.5 -68.9 ± 1.3 -73.2 ± 0.6 -393.2 ± 0.0 -128.9 ± 11.6 -84.6 ± 2.9 -235.9 ± 5.3 -379.5 ± 1.4 -83.3 ± 9.9 -149.5 ± 15.3 -159.9 ± 7.5 Cart-Pole Balancing (NO)* 101.4 ± 0.1 616.0 ± 210.8 916.3 ± 23.0 93.8 ± 1.2 99.6 ± 7.2 606.2 ± 122.2 181.4 ± 32.1 104.4 ± 16.0 Inverted Pendulum (NO) -122.2 ± 0.1 6.5 ± 1.1 11.5 ± 0.5 -110.0 ± 1.4 -119.3 ± 4.2 10.4 ± 2.2 -55.6 ± 16.7 -80.3 ± 2.8 Mountain Car (NO) -333.5 ± 0.0 -74.7 ± 7.8 -64.5 ± 8.6 -81.7 ± 0.1 -82.9 ± 0.1 -60.2 ± 2.0 -67.4 ± 1.4 -735.5 ± 0.5 Cart-Pole Balancing (SI)* -333.5 ± 0.0 -186.7 ± 31.3 -164.5 ± 13.4 -233.1 ± 0.4 -258.5 ± 14.0 -149.6 ± 8.6 -213.4 ± 6.3 -236.6 ± 6.2 Cart-Pole Balancing (SI)* -63.2 ± 0.4 -53.3 ± 5.6 -164.5 ± 13.4 -233.1 ± 0.4 -258.5 ± 14.0 -149.6 ± 8.6 -213.4 ± 6.3 -236.6 ± 6.2 Cart-Pole Balancing (SI)* -63.2 ± 0.4 -63.9 ± 0.2 -66.4 ± 0.4 -63.9 ± 0.4 Acrobot (NO)* -387.8 ± 0.0 53.8 ± 0.6 -618.8 ± 0.4	Cart-Pole Balancing (LS)*	77.1 ± 0.0	420.9 ± 265.5	945.1 ± 27.8	68.9 ± 1.5	898.1 ± 22.1	960.2 + 46.0	227.0 ± 223.0	68.0 + 1.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Acrobot (LS)* -393.2 ± 0.0 -128.9 ± 11.6 -84.6 ± 2.9 -235.9 ± 5.3 -379.5 ± 1.4 -83.3 ± 9.9 -149.5 ± 15.3 -159.9 ± 7.5 Cart-Pole Balancing (NO)* 101.4 ± 0.1 616.0 ± 210.8 916.3 ± 23.0 93.8 ± 1.2 99.6 ± 7.2 606.2 ± 122.2 181.4 ± 32.1 104.4 ± 16.0 Mountain Car (NO) -323.0 ± 0.0 -747.4 ∓ 7.8 $6-64.5 \pm 8.6$ -110.0 ± 1.4 -122.2 ± 0.1 -66.7 ± 31.3 -164.5 ± 13.4 -233.1 ± 0.4 -22.9 ± 0.1 -60.2 ± 2.0 $-67.4 \pm 1.6.7$ -80.3 ± 2.8 Acrobot (NO)* -393.5 ± 0.0 -74.7 ± 7.8 -64.5 ± 13.4 -233.1 ± 0.4 -2258.5 ± 14.0 -66.2 ± 2.0 $-67.4 \pm 1.6.7$ -73.5 ± 0.5 Cart-Pole Balancing (SI)* 76.3 ± 0.1 431.7 ± 274.1 980.5 ± 7.3 69.0 ± 2.8 702.4 ± 196.4 980.3 ± 5.1 746.6 ± 93.2 71.6 ± 2.9 Inverted Pendulum (SI) -62.7 ± 0.0 -63.9 ± 0.2 -61.8 ± 0.4 -81.4 ± 0.1 -80.7 ± 2.3 -61.6 ± 0.4 -63.9 ± 1.0 -66.9 ± 0.6 -63.9 ± 1.0 -66.9 ± 0.6 -63.9 ± 1.0 -66.9 ± 0.6 -66.9 ± 0.6 -66.9 ± 0.6									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-393.2 ± 0.0	-128.9 ± 11.6	-84.6 ± 2.9	-235.9 ± 5.3	-379.5 ± 1.4	-83.3 ± 9.9		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cart-Pole Balancing (NO)*	101.4 ± 0.1	616.0 ± 210.8	916.3 + 23.0	93.8 ± 1.2	99.6 ± 7.2	606.2 ± 122.2	181.4 ± 32.1	104.4 ± 16.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Acrobot (NO)* -393.5 ± 0.0 -186.7 ± 31.3 -164.5 ± 13.4 -233.1 ± 0.4 -258.5 ± 14.0 -149.6 ± 8.6 -213.4 ± 6.3 -236.6 ± 6.2 Cart-Pole Balancing (SD)* Inverted Pendulum (SI) Mountain Car (SI) 76.3 ± 0.1 431.7 ± 274.1 980.5 ± 7.3 69.0 ± 2.8 702.4 ± 196.4 980.3 ± 5.1 746.6 ± 93.2 71.6 ± 2.9 Mountain Car (SI) -273.4 ± 0.2 -53.3 ± 5.0 -63.9 ± 0.2 -61.8 ± 0.4 -80.7 ± 2.3 -61.6 ± 0.4 -66.9 ± 1.0 -66.9 ± 1.0 -66.9 ± 1.0 -66.9 ± 1.0 -66.9 ± 0.6 Acrobot (SI)* -387.8 ± 1.0 -169.1 ± 32.3 -166.4 ± 0.4 -61.8 ± 0.4 -61.4 ± 0.1 -230.2 ± 2.6 -216.1 ± 7.7 -170.9 ± 40.3 -2250.2 ± 13.7 -245.0 ± 5.5 Swimmer + Gathering 0.0 ± 0.0 0.0									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cart-Pole Balancing (SD*	76.3 ± 0.1	431.7 ± 274.1	980.5 + 7.3	69.0 + 2.8	702.4 ± 196.4	980.3 + 5.1	746.6 + 93.2	71.6 + 2.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Acrobot (S)* -387.8 ± 1.0 -169.1 ± 32.3 -156.6 ± 38.9 -233.2 ± 2.6 -216.1 ± 7.7 -170.9 ± 40.3 -250.2 ± 13.7 -245.0 ± 5.5 Swimmer + Gathering 0.0 ± 0.0									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Swimmer + Gathering	0.0 + 0.0	0.0 + 0.0	0.0 ± 0.0	0.0+ 0.0	0.0+ 0.0	0.0 + 0.0	0.0 + 0.0	0.0+ 0.0
Swimmer + Maze 0.0 ± 0.0									

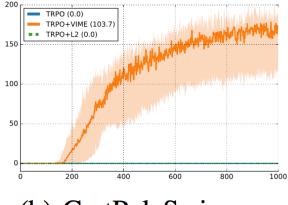
rllab

[Duan et al, ICML 2016]

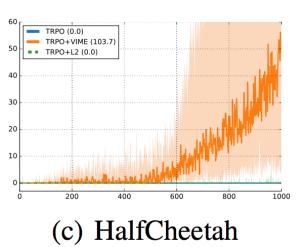
Open Al Gym

Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

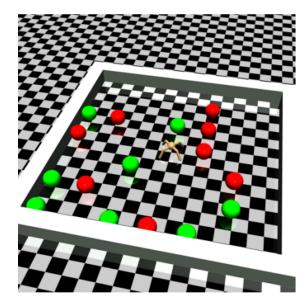

[Houthooft, Chen, Duan, Schulman, Turck, Abbeel, 2016]

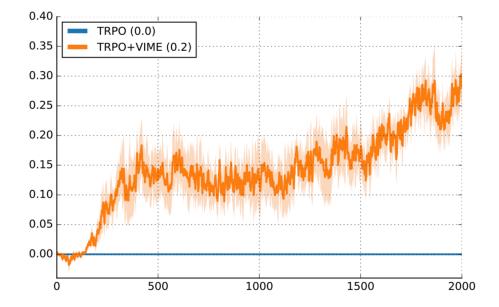

$r'(s_t, a_t, s_{t+1}) = r(s_t, a_t) + \eta D_{\mathrm{KL}}[p(\theta|\xi_t, a_t, s_{t+1}) \| p(\theta|\xi_t)]$

Building on:

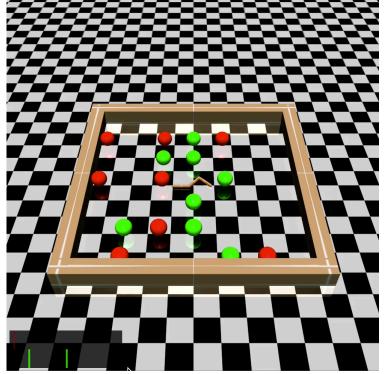

Curiosity: Schmidhuber , 1991; Sun, Gomez, Schmidhuber, 2011; Schmidhuber, 2010 Bayesian neural nets: Blundell, Cornebise, Kavukcuoglu, Wierstra, 2015

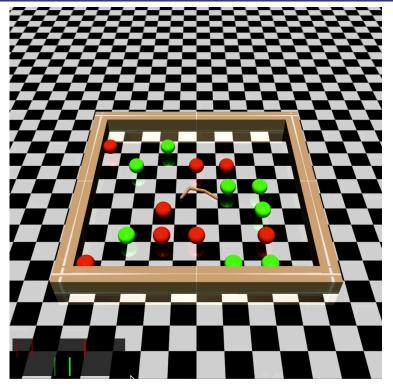
[Houthooft, Chen, Duan, Schulman, Turck, Abbeel, 2016]





Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope


[Houthooft, Chen, Duan, Schulman, Turck, Abbeel, 2016]



Swimmer + Food Collection

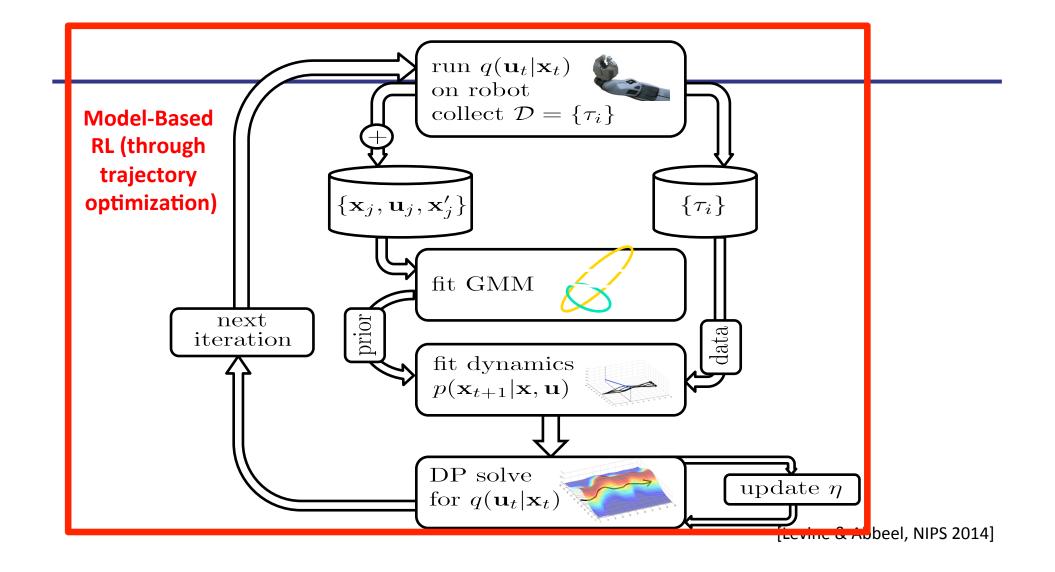
[Houthooft, Chen, Duan, Schulman, Turck, Abbeel, 2016]

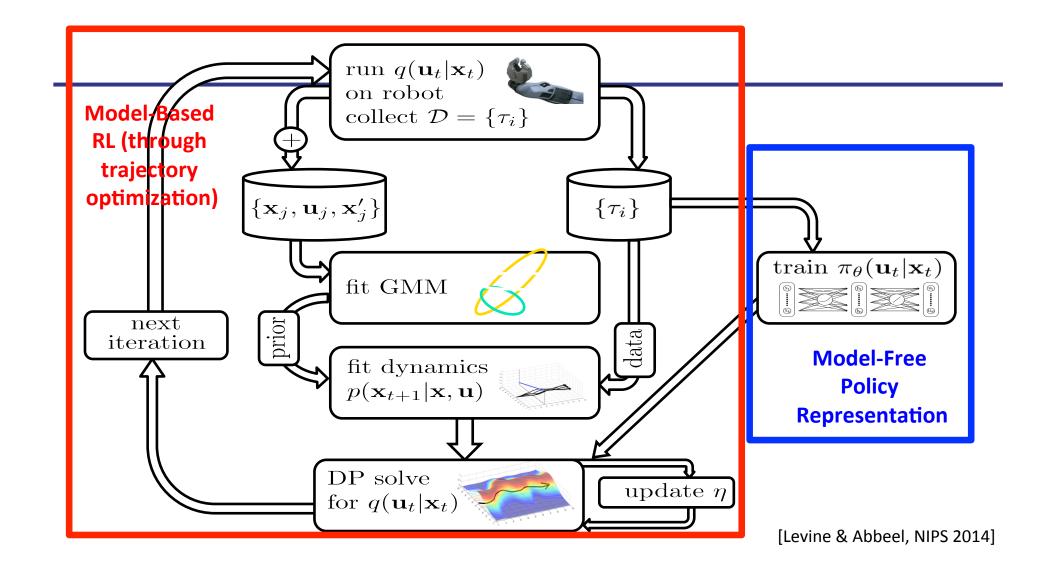
TRPO

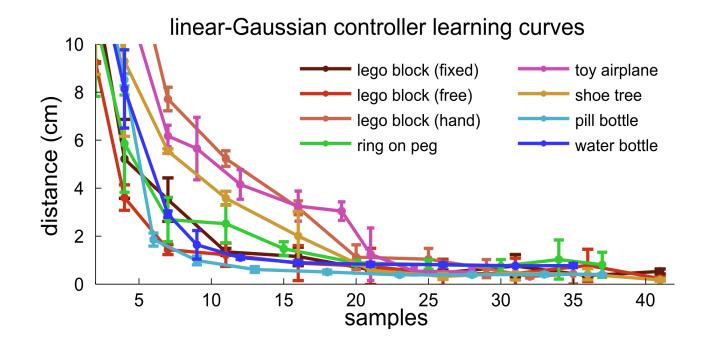
TRPO + VIME

Swimmer + Food Collection

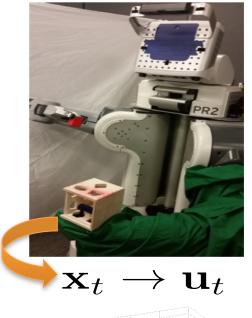
How About Real Robotic Visuo-Motor Skills?

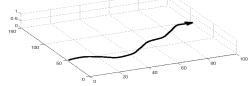



Guided Policy Search

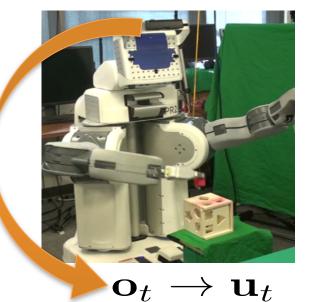

- Issue with two-phase pipeline
 - Representational mismatch trajectory distribution vs. neural net

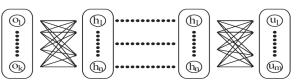
$$\rightarrow \text{Joint optimization} \quad \max_{\{\pi^{(i)}\},\theta} \sum_{i} \mathrm{E}[\sum_{t=0}^{H} R(s_{t}^{(i)}) \mid \pi^{(i)}] - \lambda \sum_{i} \|\pi^{(i)} - \pi_{\theta}\|$$

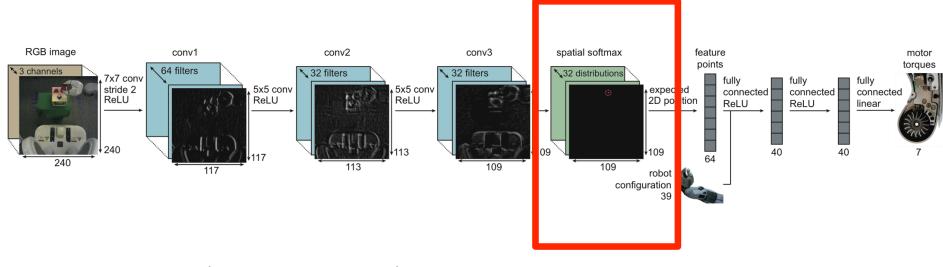

Linear-Gaussian Controller Learning Curves



Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

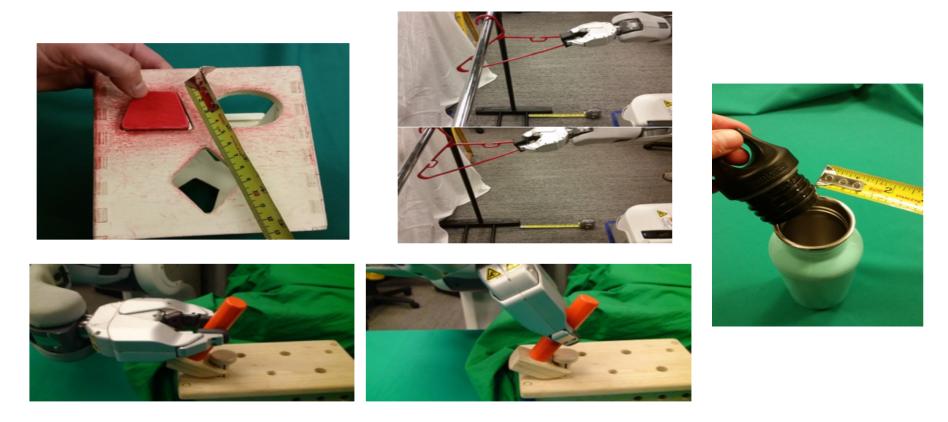

Instrumented Training


training time



test time

π_{θ} Deep Spatial Neural Net Architecture



(92,000 parameters)

Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

Experimental Tasks

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

Learning

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

Visuomotor Learning Directly in Visual Space

[Finn, Tan, Duan, Darrell, Levine, Abbeel, ICRA 2016]

Related work: Embed to Control [Wattenberg, Springenberg, Boedecker, Riedmiller, 2015]

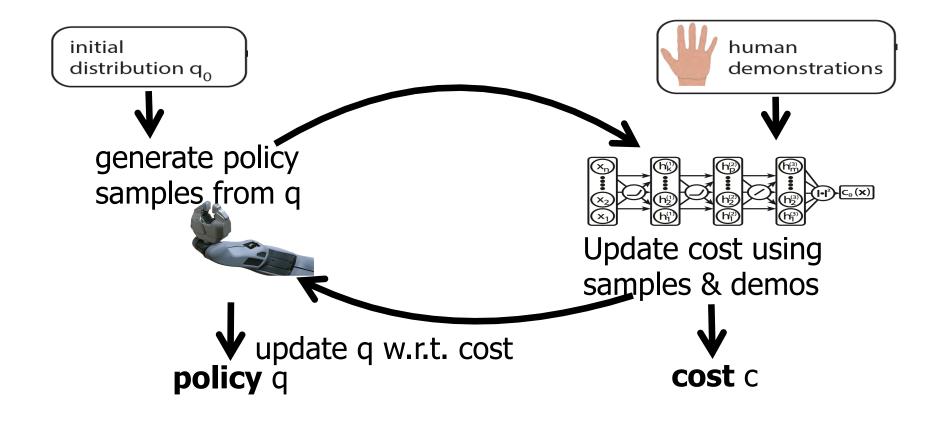
Visuomotor Learning Directly in Visual Space

[Finn, Tan, Pbuahbearrefl, የድረዝ በራን የዳን የሚያስት የመደረጉ የሚያስት የ ስት የሚያስት የ

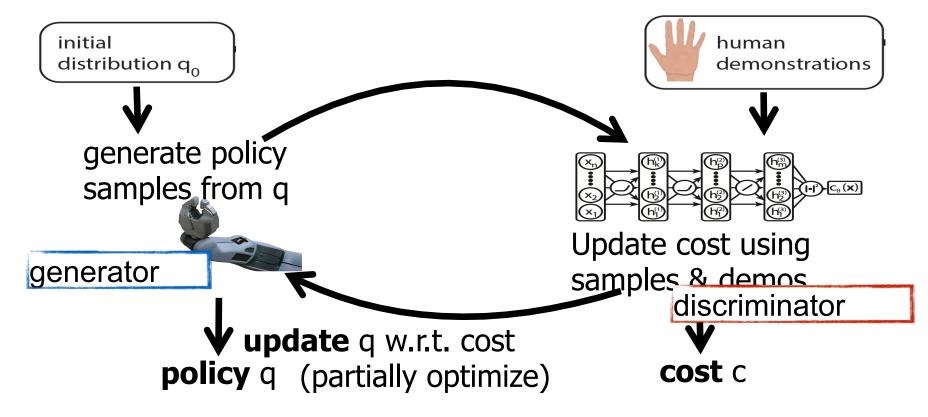
Visuomotor Cost Function Learning

- Learning from goal image can be great
- But:
 - Often other objects in environment --- don't actually expect to perfectly match example goal image
 - Goal image might not reveal much about how to get there

Visuomotor Cost Function Learning

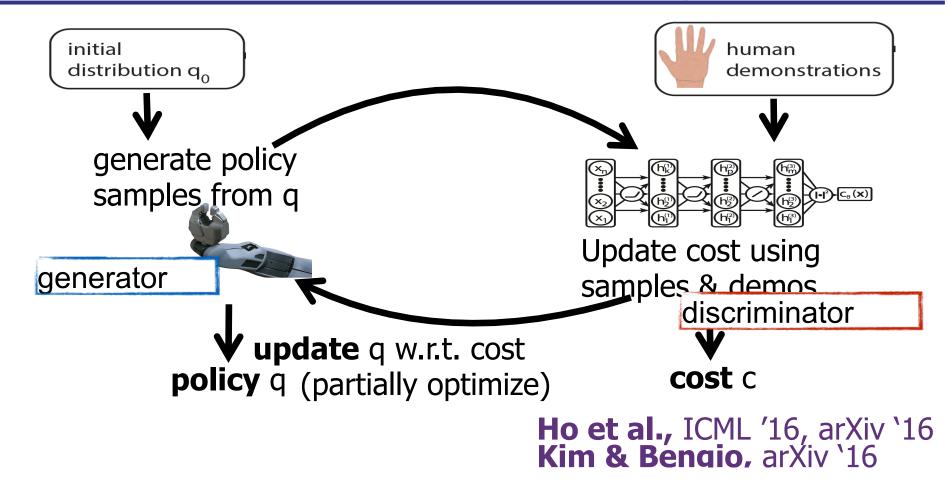

 \rightarrow infer cost function from demonstrations

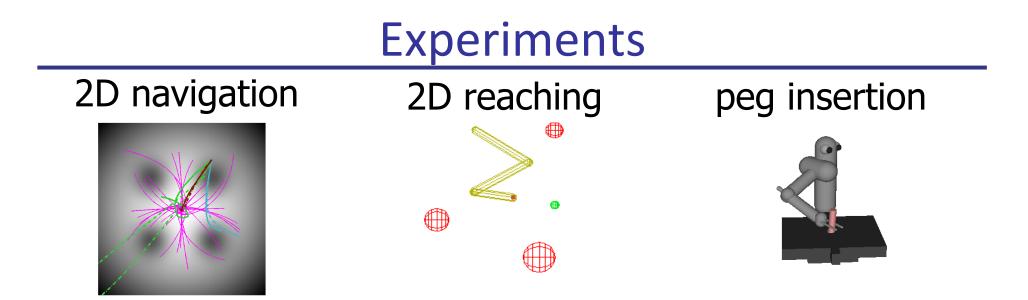
Challenges:

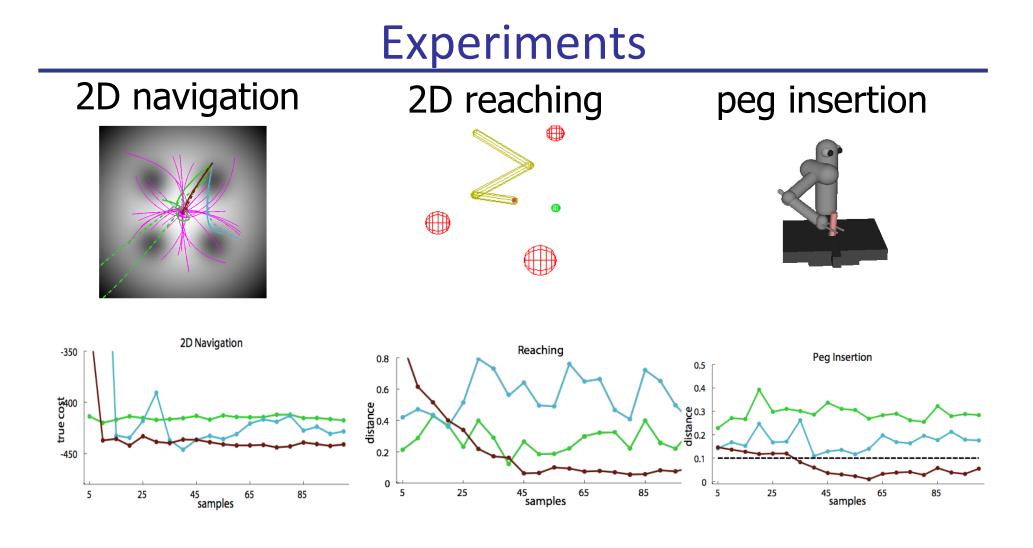

- underdefined problem
- difficult to evaluate learned cost
- large perceptual input spaces

Prior Approaches	Desiderata			
repeatedly solve MDP Abbeel & Ng '04 Ziebart et al. '08 Ratliff et al. '09	avoid (repeatedly) solving the MDP			
use known dynamics Todorov '06 Levine et al. '12 Dragan et al. '12	handle unknown dynamics			
use hand-designed features Boularias et al. '11 Kalakrishnan et al. '13 Doerr et al. '15	<i>learn features with flexible, nonlinear cost parametrization</i> + sample efficiency			

Guided Cost Learning




Guided Cost Learning


update cost in inner loop of policy optimization

Guided Cost Learning

high-dimensional continuous states & actions direct torque control complex contact dynamics

Frontiers

Shared and transfer learning

- Memory
 - Estimation
 - Temporal hierarchy / goal setting

Applications

Pieter Abbeel -- UC Berkeley / OpenAI / Gradescope

Thank you