
Deep	Reinforcement	Learning	for	Robo2cs	
Pieter	Abbeel	

UC	Berkeley	/	OpenAI	/	gradescope.com	[code:	ICML2016]	

Deep	Reinforcement	Learning	(RL)	

n  Goal:	

	
	
		

max

✓
E[

HX

t=0

R(st)|⇡✓]

probability	of	taking	ac9on	a	in	state	s		

Robot +
Environment

⇡✓(a|s)

n  Addi2onal	challenges:	

n  Stability	

n  Credit	assignment	

n  Explora2on	

	 	
		

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

From	Pixels	to	Ac9ons?	

Pong	 Enduro	 Beamrider	 Q*bert	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

[Source:	Mnih	et	al.,	Nature	2015	(DeepMind)]	

Deep	Q-Network	(DQN):	From	Pixels	to	Joys9ck	Commands	

32	8x8	filters	with	stride	4		+	ReLU	
64	4x4	filters	with	stride	2		+	ReLU	
64	3x3	filters	with	stride	1		+	ReLU	
fully	connected	512	units	+	ReLU	
fully	connected	output	units,	one	per	ac9on		 Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

[Source:	Mnih	et	al.,	Nature	2015	(DeepMind)]	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

How	About	Con9nuous	Control,	e.g.,	Locomo9on?	

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

[15] J. Peters, K. Mülling, and Y. Altün. Relative entropy policy search. In AAAI Conference on Artificial
Intelligence, 2010.

[16] J Andrew Bagnell and Jeff Schneider. Covariant policy search. IJCAI, 2003.

[17] Peter L Bartlett and Jonathan Baxter. Infinite-horizon policy-gradient estimation. arXiv preprint
arXiv:1106.0665, 2011.

[18] Michail G Lagoudakis and Ronald Parr. Reinforcement learning as classification: Leveraging modern
classifiers. In ICML, volume 3, pages 424–431, 2003.

[19] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific Belmont,
MA, 3rd edition, 2005.

[20] Andrew Y Ng and Michael Jordan. Pegasus: A policy search method for large mdps and pomdps. In
Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pages 406–415. Morgan
Kaufmann Publishers Inc., 2000.

[21] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7):1180–1190, 2008.

[22] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 5026–5033.
IEEE, 2012.

[23] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pages 745–750.
ACM, 2007.

[24] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. Systems, Man and Cybernetics, IEEE Transactions on, (5):834–846,
1983.

[25] David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and mixing times. American
Mathematical Society, 2009.

[26] Stephen J Wright and Jorge Nocedal. Numerical optimization, volume 2. Springer New York, 1999.

[27] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

[28] James Bergstra et al. Theano: a CPU and GPU math expression compiler.

A Approximating policies with neural networks

Jo
in

ta
ng

le
s

an
d

ki
ne

m
at

ic
s

Control

Standard
deviations

Fully
connected

layer

30 units

Input
layer

Mean
parameters Sampling

Figure 4: Neural network architecture for the locomotion domain: Two fully connected hidden lay-
ers transform the input to the mean µ of a Normal distribution from which the controls are sampled.

To represent the stochastic policy ⇡
✓

, we use a neural network with weights ✓. The network maps the
observations to a set of parameters indexing the probability distribution that is then used to sample
the controls for the rollouts. We now describe the architecture used in the respective domains in
more detail.

13

Neural	network	architecture:	

Input:	joint	angles	and	veloci9es	
Output:	joint	torques	

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 1: Robot models used for locomotion experiments, instantiated in MuJoCo physics simulator.
The three models on the left are constrained to two dimensions and are called the swimmer, hopper,
and walker—these models were used for the main experimental comparisons.

two other approaches: reward-weighted regression (RWR) [23]4 and the cross entropy method. All
of the methods were used to optimize the same neural-network parameterization of the policy.5 A
detailed listing of parameters used in the experiment is provided in Appendix E. We include the
classic cart-pole balancing task in additional to the more challenging locomotion domains, based on
the formulation from Barto et al. [24].

Learning curves of the policy optimization methods are shown in Figure 2. Our vine algorithm was
able to solve all of the tasks, learning a stable and naturalistic gait for the 2D hopper and walker.
The single path algorithm exhibits the best looking learning curves (the most reliably monotonic
improvement of total expected cost), but it did not yield a locomotion controller for the 2D walker;
instead, it yielded a controller that stood up but did not bother to move.

The cross-entropy method was not able to solve any of the tasks other than cart-pole, presumably
because it does not perform well for optimization problems with more than a couple dozen parame-
ters. Reward-weighted regression also performed reasonably well on the tasks, which is consistent
with the fact that it is performing gradient-based optimization of the policy, thus it can be expected
to scale with the number of parameters.6

We have also obtained promising preliminary results optimizing control policies for a 3D humanoid
model, which has 51 state dimensions and 19 actuators, using the single path algorithm. While the
initial policy falls over immediately, after several hundred iterations of policy iteration, we obtain a
policy that make substantial forward progress and survives for more than ten seconds before falling
over. Learning curves are shown in Figure 2.

6.2 Atari Domain

Next, we studied invested applied our algorithms to learn learn policies for playing Atari games,
using raw images as input. These games require a variety of different behaviors, such as dodging
bullets and hitting balls with paddles. Some games are made more difficult by the timing of when
rewards are delivered; for example, in most games, no immediate penalty is received after losing a
life. The diversity of the games makes Atari an interesting testbed for reinforcement learning. We
tested our policy optimization algorithms on the same seven games that Mnih et al. [5] reported
results on, since theirs is the only prior work on this domain that uses raw images as input, so that
work is the only meaningful reference for comparison.

As for the mundane implementation details, we first convert the images to grayscale and downsample
by a factor of four. We use the last four images as input to the policy. The policy is represented by a
convolutional neural network, whose structure is shown in Figure 5.

4We implemented the following variant of reward-weighted regression. First, sample a set of trajectories
from the stochastic policy. Select the top 10% of trajectories that achieve the lowest total cost. Then use
L-BFGS to maximize the log-likelihood of all of the controls performed along those trajectories.

5 We reduced the number of hidden units for the cross-entropy method, which improved its performance.
6 The learning curves slightly overstate the performance of RWR, though, because the experiment with

RWR used a single initial state, whereas the other methods used a distribution over initial states. Using a
single initial state was necessary for good performance of our implementation of RWR, but there may be some
modifications that make RWR suitable for a distribution of initial states.

8

Robot	models	in	physics	simulator	
(MuJoCo,	from	Emo	Todorov)	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

n  How	to	score	every	possible	ac9on?	

n  How	to	ensure	monotonic	progress?	

Challenges	with	Q-Learning	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

n  Oeen	simpler	to	represent	good	policies	than	good	value	func9ons	
n  True	objec9ve	of	expected	cost	is	op9mized	(vs.	a	surrogate	like	Bellman	error)	

n  Exis9ng	work:	(natural)	policy	gradients	

n  Challenges:		good,	large	step	direc9ons	

Policy	Op9miza9on	

max

✓
E[

HX

t=0

R(st)|⇡✓]

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

n  						:	Surrogate	Objec9ve	

n  							:	Trust	region	

Trust	Region	Policy	Op9miza9on	

max

✓
E[

HX

t=0

R(st)|⇡✓]

[Schulman,	Levine,	Moritz,	Jordan,	Abbeel,	2015]	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

max

�✓
ˆL(✓ + �✓)

s.t. KL (P (⌧ ; ✓)||P (⌧ ; ✓ + �✓))  "

L̂

KL

[Schulman,	Levine,	A.]	

Experiments	in	Locomo9on	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Learning	Curves	--	Comparison	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

n  Generalized	Advantage	Es9ma9on	

n  Exponen9al	interpola9on	between	actor-cri9c	and	Monte	Carlo	es9mates	

n  Trust	region	approach	to	(high-dimensional)	value	func9on	es9ma9on	

Generalized	Advantage	Es9ma9on	(GAE)	
max

✓
E[

HX

t=0

R(st)|⇡✓]

[Schulman,	Moritz,	Levine,	Jordan,	Abbeel,	ICLR	2016]	

Objec9ve:	

Gradient:	

single	sample	es9mate	of	advantage	

E[

HX

t=0

r✓ log ⇡✓(at|st)

HX

k=t

R(sk)� V (st)

!
]

Learning	Locomo9on	through	Trust	Region	Policy	Op9miza9on	(TRPO)	

[Schulman,	Moritz,	Levine,	Jordan,	Abbeel,	ICLR	2016]	 Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

n  Deep	Q-Network	(DQN)	[Mnih	et	al,	2013/2015]	

n  Dagger	with	Monte	Carlo	Tree	Search	[Xiao-Xiao	et	al,	2014]	

n  Trust	Region	Policy	Op9miza9on	[Schulman,	Levine,	Moritz,	Jordan,	Abbeel,	2015]	

n  A3C	[Mnih	et	al.,	2016]	

Atari	Games	

Pong	 Enduro	 Beamrider	 Q*bert	
Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

n  Tasks	

n  Algorithms	

n  Experimental	setup	

Deep	RL	Benchmarking	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

1.	Basic	tasks	

	

2.	Locomo9on	

Deep	RL	Benchmarking	--	Tasks	

3.	Hierarchical	

	

	

4.	Par9ally	observable	

						sensing,	delayed	ac9on,	sysID	

5.	Driving…	

	

	

		

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

n  Reinforce	

n  Truncated	Natural	Policy	Gradient	

n  Reward-Weighted	Regression	(RWR)	

n  Rela9ve	Entropy	Policy	Search	(REPS)	

n  Trust-Region	Policy	Op9miza9on	(TRPO)	

n  Cross-Entropy	Method	(CEM)	

n  Covariance	Matrix	Adapta9on	Evolu9on	Strategy	(CMA-ES)	

n  Deep	Determinis9c	Policy	Gradients	(DDPG)	

n  …	

Deep	RL	Benchmarking	--	Algorithms	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Benchmarking	[Duan	et	al,	ICML	2016]	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

rllab	 [Duan et al, ICML 2016]

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Open	AI	Gym	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Building on:
 Curiosity: Schmidhuber , 1991; Sun, Gomez,
 Schmidhuber, 2011; Schmidhuber, 2010
 Bayesian neural nets: Blundell, Cornebise, Kavukcuoglu,
 Wierstra, 2015 Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Curiosity-driven	Explora9on	
[Houthooft, Chen, Duan, Schulman, Turck, Abbeel, 2016]

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Curiosity-driven	Explora9on	
[Houthooft, Chen, Duan, Schulman, Turck, Abbeel, 2016]

Swimmer + Food Collection
Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Curiosity-driven	Explora9on	
[Houthooft, Chen, Duan, Schulman, Turck, Abbeel, 2016]

Curiosity-driven	Explora9on	
[Houthooft, Chen, Duan, Schulman, Turck, Abbeel, 2016]

Swimmer + Food Collection Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

TRPO	 TRPO	+	VIME	

How	About	Real	Robo9c	Visuo-Motor	Skills?	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

n  Issue	with	two-phase	pipeline	

n  Representa9onal	mismatch	trajectory	distribu9on	vs.	neural	net	

					à	Joint	op9miza9on	

	

Guided	Policy	Search	

Supervised	learning	

Model-Based	RL	(through	
trajectory	op9miza9on)	

max

{⇡(i)},✓

X

i

E[

HX

t=0

R(s(i)t) | ⇡(i)
]� �

X

i

k⇡(i) � ⇡✓k

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

General	Neural	Net	Policy	

[Levine	&	Abbeel,	NIPS	2014]	

Model-Based	
RL	(through	
trajectory	

op2miza2on)	

[Levine	&	Abbeel,	NIPS	2014]	

Model-Based	
RL	(through	
trajectory	

op2miza2on)	

Model-Free	
Policy	

Representa2on	

Linear-Gaussian	Controller	Learning	Curves	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Instrumented Training
training time test time

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Deep	Spa9al	Neural	Net	Architecture	

(92,000	parameters)	

⇡✓

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	[Levine*,	Finn*,	Darrell,	Abbeel,	JMLR	2016]	

Experimental Tasks

[Levine*,	Finn*,	Darrell,	Abbeel,	JMLR	2016]	 Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Learning	

[Levine*,	Finn*,	Darrell,	Abbeel,	JMLR	2016]	 Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Visuomotor	Learning	Directly	in	Visual	Space	

Related	work:	Embed	to	Control	[Wamenberg,	
Springenberg,	Boedecker,	Riedmiller,	2015]	 Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

[Finn,	Tan,	Duan,	Darrell,	Levine,		Abbeel,	ICRA	2016]	

	

Visuomotor	Learning	Directly	in	Visual	Space	

[Finn,	Tan,	Duan,	Darrell,	Levine,		Abbeel,	2015]	Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

n  Learning	from	goal	image	can	be	great	

n  But:	
n  Oeen	other	objects	in	environment	---	don’t	actually	expect	to	perfectly	

match	example	goal	image	

n  Goal	image	might	not	reveal	much	about	how	to	get	there	

Visuomotor	Cost	Func9on	Learning	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Visuomotor	Cost	Func9on	Learning	

à infer	cost	func9on	from	demonstra9ons	

	
Challenges:	

	-	underdefined	problem	
	-	difficult	to	evaluate	learned	cost	
	-	large	perceptual	input	spaces	

	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Goal:
learn flexible neural network costs
under unknown dynamics

Challenges:
underdefined, ill-posed problem
expensive to evaluate learned cost

Prior	Approaches	
repeatedly	solve	MDP	

use	known	dynamics	

Abbeel	&	Ng	’04	
Ziebart	et	al.	’08	
Ratliff	et	al.	‘09	

Todorov	’06	
Levine	et	al.	‘12	
Dragan	et	al.	’12	

use	hand-designed	features	
Boularias	et	al.	‘11	
Kalakrishnan	et	al.	’13	
Doerr	et	al.	‘15	

avoid	(repeatedly)		solving	the	MDP	

handle	unknown	dynamics	

learn	features	with		
flexible,	nonlinear		

cost	parametriza7on	

+	sample	efficiency	

Desiderata	

Update cost using
samples & demos

generate policy
samples from q

update q w.r.t. cost
policy q cost c

Guided	Cost	Learning	

Update cost using
samples & demos

generate policy
samples from q

update q w.r.t. cost
 (partially optimize)

generator

policy q cost c

discriminator

update cost in inner loop of policy optimization

Guided	Cost	Learning	

Update cost using
samples & demos

generate policy
samples from q

generator

Ho et al., ICML ’16, arXiv ‘16

policy q cost c

discriminator
update q w.r.t. cost
 (partially optimize)

Kim & Bengio, arXiv ‘16

Guided	Cost	Learning	

Experiments	
peg insertion 2D reaching 2D navigation

direct	torque	control	
complex	contact	dynamics	

high-dimensional	con9nuous	states	&	ac9ons	

Experiments	
peg insertion 2D reaching 2D navigation

n  Shared	and	transfer	learning	

Fron9ers	
n  Memory	

n  Es9ma9on	

n  Temporal	hierarchy	/	goal	
setng	

n  Applica9ons	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

Thank	you	

Pieter	Abbeel	--	UC	Berkeley	/	OpenAI	/	Gradescope	

