
Reinforcement learning of conditional
computation policies for neural networks

Emmanuel Bengio, Pierre-Luc Bacon, Ryan Lowe
Joelle Pineau, Doina Precup

June 23, 2016



Motivation

I Using RL to take decisions inside deep architectures
I Running high capacity models on low-end devices

I Phones, mobile devices, electric wheelchair, etc.

I Large networks, fast evaluation?
I sparse models
I pruning, quantization
I lazy/conditional evaluations



Conditional Computation

I Learn a gater function
→ which parts of the model to evaluate
→ which parts are useful

I Learn the main model concurrently



Conditional Computation with RL

I Build model with parameters θ
I Divide parameters/computation into disjoint subsets of θ/H
I Learn a gating policy πω(x) with separate parameters ω
→stochastic policy with binary actions (on/off)
→one action per subset
→state space is x

I Learn the main model(θ) concurrently



The REINFORCE estimator

k-Bernoulli policy:

σ = sigm(W(ω)x + b(ω))

ui ∼ Bern(σi)

π(u | x) =
k∏

i=1

σui
i (1− σi)

(1−ui)

∇ωL =

minibatch∑
j

(cost(xj)− b)∇ω logπω(uj|xj)

b is an exponential moving average of the costs.



Policy Regularization

I Lb =
∑n

j ‖E{σj} − τ‖2
each unit is τ in E over the xs

I Le = E{‖(1
n

∑n
j σj)− τ‖2}

the mean of units is τ for some x
I Lv = −

∑n
j vari{σij}

encourage input-dependent units



Fully-Connected Architecture

red: policy
blue: network



Convolutional Architecture

red: policy
blue: network

All kinds of parametrizations are possible



Policies (fully connected, MNIST)



Policy Regularization

I Lb =
∑n

j ‖E{σj} − τ‖2
each unit is τ in E over the xs

I Le = E{‖(1
n

∑n
j σj)− τ‖2}

the mean of units is τ for some x

100 200 300 400 500 600 700
λs

0.61

0.62

0.63

0.64

0.65

0.66

va
lid

er
ro

r
(%

)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ru
n

tim
e

(s
)

error runtime

I Lv = −
∑n

j vari{σij}
encourage input-dependent units

0 10 20 30 40 50 60
epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

va
lid

er
ro

r
(%

)

λv = 15.82

λv = 369.8



Fully-Connected Results
I MNIST, CIFAR-10, SVHN
I Same or better accuracy than conventional NN
I up to 5× faster
I >25-50× less computations

1.0 10.0
time of validation (sec)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

va
lid

er
ro

r
(%

)

NN
condnet



Convnet Results

model test error N τ test time

conv-condnet .157 4 0.5 1.03s
conv-condnet .167 4 0.3 0.84s
conv-condnet .176 4 0.2 0.66s
conv-condnet .173 2 0.5 0.58s

conv-NN .159 4 - 1.07s

CIFAR-10 results for conditional convnets



Conclusion

I It works!
I Similar accuracy, lower forward-pass time
I Much less computations being done

(25% active nodes→ ~6.25% computations, 10%→1%)

I Does not scale very well (REINFORCE?)
I Hard to compete with dense computations
I Chicken and egg problem during learning


