Reinforcement learning of conditional
computation policies for neural networks

Emmanuel Bengio, Pierre-Luc Bacon, Ryan Lowe
Joelle Pineau, Doina Precup

June 23, 2016

T McGill

Motivation

» Using RL to take decisions inside deep architectures
» Running high capacity models on low-end devices

» Phones, mobile devices, electric wheelchair, etc.
» Large networks, fast evaluation?

» sparse models
» pruning, quantization
» lazy/conditional evaluations

Conditional Computation

» Learn a gater function
— which parts of the model to evaluate
— which parts are useful

» Learn the main model concurrently

Conditional Computation with RL

» Build model with parameters 6
» Divide parameters/computation into disjoint subsets of 6/H

» Learn a gating policy 7., (x) with separate parameters w
—stochastic policy with binary actions (on/off)
—one action per subset
—state space is x

» Learn the main model(#) concurrently

The REINFORCE estimator

k-Bernoulli policy:

o = sigm(W@x + b))

u; ~ Bern(o;)

k

m(ulx) = [T o1 - o=

i=1
minibatch
Vol = Y (cost(x;) — b)V, log m,(ulx;)
J

b is an exponential moving average of the costs.

Policy Regularization

> Ly =37 |E{o;} — 72
each unitis 7 in E over the xs

> Le=E{|(A 5} o)) — 7|2}

the mean of units is 7 for some x
> L, =— ZJn vari{aij}

encourage input-dependent units

Fully-Connected Architecture

red: policy
blue: network

Convolutional Architecture

red: policy
blue: network

T

BEE

All kinds of parametrizations are possible

AN

Policies (fully connected, MNIST)

] T T
I [
.
0.8 0.8
b
0.6 0.6
.
.
04 04
0.2 0.2
i .
P A I RS PO ST B I ool b & & 4
0 2 4 3 8 0 1z 141 o 2 4
o — 77 L I L]
0.8
0.6
04
LI l..
. .
02 o . H .
.
.
1
DD"III‘llllllil
© T

Policy Regularization

> Ly =37 [E{oj} — 7|2
each unitis 7 in E over the xs
> Lo =E{||(3 X} 0j) — 7ll2}

the mean of units is T for some x

> L, = —) i vari{oy}
encourage input-dependent units

0.66 pa-smemy—————————— 5.0
o eoor] [A runtime]
iy

(
) o
2 =
T

valid error
o
o
14

Y A S S 1.0
100 200 300 400 500 600 700
Ao

epoch

Fully-Connected Results

» MNIST, CIFAR-10, SVHN

» Same or better accuracy than conventional NN
» up to 5x faster

» >25-50x less computations

0.40

0.3 * A NN
0 l:’ A :A'A. e condnet

030]®. o902, 9.9

0.25 -

020t B G

valid error (%)

A

0.05

time of validation (sec)

Convnet Results

] model | testerror [N[7 [testtime |
conv-condnet 157 4105 1.03s
conv-condnet 167 4 10.3 0.84s
conv-condnet 176 4102 0.66s
conv-condnet 173 2105 0.58s

conv-NN .159 4 | - 1.07s

CIFAR-10 results for conditional convnets

Conclusion

> |t works!
» Similar accuracy, lower forward-pass time

» Much less computations being done
(25% active nodes — ~6.25% computations, 10%—1%)

» Does not scale very well (REINFORCE?)
» Hard to compete with dense computations
» Chicken and egg problem during learning

