Reinforcement learning of conditional computation policies for neural networks

Emmanuel Bengio, Pierre-Luc Bacon, Ryan Lowe Joelle Pineau, Doina Precup

June 23, 2016

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Motivation

- Using RL to take decisions inside deep architectures
- Running high capacity models on low-end devices
 - Phones, mobile devices, electric wheelchair, etc.

(ロ) (同) (三) (三) (三) (○) (○)

- Large networks, fast evaluation?
 - sparse models
 - pruning, quantization
 - lazy/conditional evaluations

Conditional Computation

- Learn a gater function
 - \rightarrow which parts of the model to evaluate

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- \rightarrow which parts are useful
- Learn the main model concurrently

Conditional Computation with RL

- Build model with parameters θ
- Divide parameters/computation into disjoint subsets of θ/H
- Learn a gating policy π_ω(x) with separate parameters ω
 →stochastic policy with binary actions (on/off)
 →one action per subset
 →state space is x

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Learn the main model(θ) concurrently

The **REINFORCE** estimator

k-Bernoulli policy:

$$\sigma = \operatorname{sigm}(W^{(\omega)}\mathbf{x} + b^{(\omega)})$$

 $u_i \sim \text{Bern}(\sigma_i)$

$$\pi(\mathbf{u} \,|\, \mathbf{x}) = \prod_{i=1}^k \sigma_i^{u_i} (1 - \sigma_i)^{(1-u_i)}$$

$$\nabla_{\omega} \mathcal{L} = \sum_{j}^{minibatch} (cost(\mathbf{x}_j) - b) \nabla_{\omega} \log \pi_{\omega}(\mathbf{u}_j | \mathbf{x}_j)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

b is an exponential moving average of the costs.

Policy Regularization

•
$$L_b = \sum_j^n \|\mathbb{E}\{\sigma_j\} - \tau\|_2$$

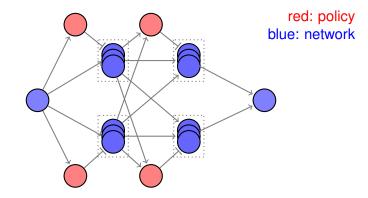
each unit is τ in \mathbb{E} over the xs

►
$$L_e = \mathbb{E}\{\|(\frac{1}{n}\sum_{j}^{n}\sigma_j) - \tau\|_2\}$$

the mean of units is τ for some **x**

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Fully-Connected Architecture

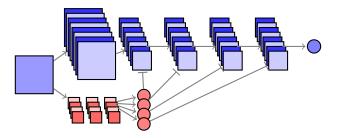


▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Convolutional Architecture

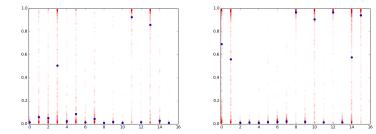
red: policy blue: network

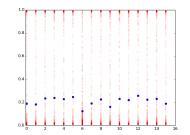
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



All kinds of parametrizations are possible

Policies (fully connected, MNIST)

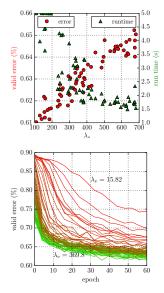




Policy Regularization

►
$$L_e = \mathbb{E}\{\|(\frac{1}{n}\sum_{j}^{n}\sigma_j) - \tau\|_2\}$$

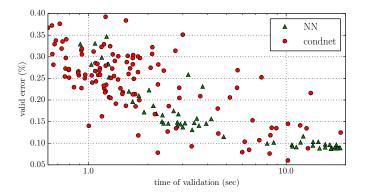
the mean of units is τ for some **x**



▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

Fully-Connected Results

- MNIST, CIFAR-10, SVHN
- Same or better accuracy than conventional NN
- up to 5× faster
- >25-50× less computations



イロト イヨト イヨト イヨト

æ

Convnet Results

model	test error	Ν	au	test time
conv-condnet	.157	4	0.5	1.03s
conv-condnet	.167	4	0.3	0.84s
conv-condnet	.176	4	0.2	0.66s
conv-condnet	.173	2	0.5	0.58s
conv-NN	.159	4	-	1.07s

CIFAR-10 results for conditional convnets

Conclusion

It works!

- Similar accuracy, lower forward-pass time
- Much less computations being done (25% active nodes → ~6.25% computations, 10%→1%)

(ロ) (同) (三) (三) (三) (○) (○)

- Does not scale very well (REINFORCE?)
- Hard to compete with dense computations
- Chicken and egg problem during learning