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Motivation

I Using RL to take decisions inside deep architectures
I Running high capacity models on low-end devices

I Phones, mobile devices, electric wheelchair, etc.

I Large networks, fast evaluation?
I sparse models
I pruning, quantization
I lazy/conditional evaluations



Conditional Computation

I Learn a gater function
→ which parts of the model to evaluate
→ which parts are useful

I Learn the main model concurrently



Conditional Computation with RL

I Build model with parameters θ
I Divide parameters/computation into disjoint subsets of θ/H
I Learn a gating policy πω(x) with separate parameters ω
→stochastic policy with binary actions (on/off)
→one action per subset
→state space is x

I Learn the main model(θ) concurrently



The REINFORCE estimator

k-Bernoulli policy:

σ = sigm(W(ω)x + b(ω))

ui ∼ Bern(σi)

π(u | x) =
k∏

i=1

σui
i (1− σi)

(1−ui)

∇ωL =

minibatch∑
j

(cost(xj)− b)∇ω logπω(uj|xj)

b is an exponential moving average of the costs.



Policy Regularization

I Lb =
∑n

j ‖E{σj} − τ‖2
each unit is τ in E over the xs

I Le = E{‖(1
n

∑n
j σj)− τ‖2}

the mean of units is τ for some x
I Lv = −

∑n
j vari{σij}

encourage input-dependent units



Fully-Connected Architecture

red: policy
blue: network



Convolutional Architecture

red: policy
blue: network

All kinds of parametrizations are possible



Policies (fully connected, MNIST)
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Fully-Connected Results
I MNIST, CIFAR-10, SVHN
I Same or better accuracy than conventional NN
I up to 5× faster
I >25-50× less computations
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Convnet Results

model test error N τ test time

conv-condnet .157 4 0.5 1.03s
conv-condnet .167 4 0.3 0.84s
conv-condnet .176 4 0.2 0.66s
conv-condnet .173 2 0.5 0.58s

conv-NN .159 4 - 1.07s

CIFAR-10 results for conditional convnets



Conclusion

I It works!
I Similar accuracy, lower forward-pass time
I Much less computations being done

(25% active nodes→ ~6.25% computations, 10%→1%)

I Does not scale very well (REINFORCE?)
I Hard to compete with dense computations
I Chicken and egg problem during learning


