Gradient Boosting for RL in Complex Domains

David Abel², Alekh Agarwal¹, Fernando Diaz¹, Akshay Krishnamurthy¹, Robert Schapire¹

¹Microsoft Research ²Brown University

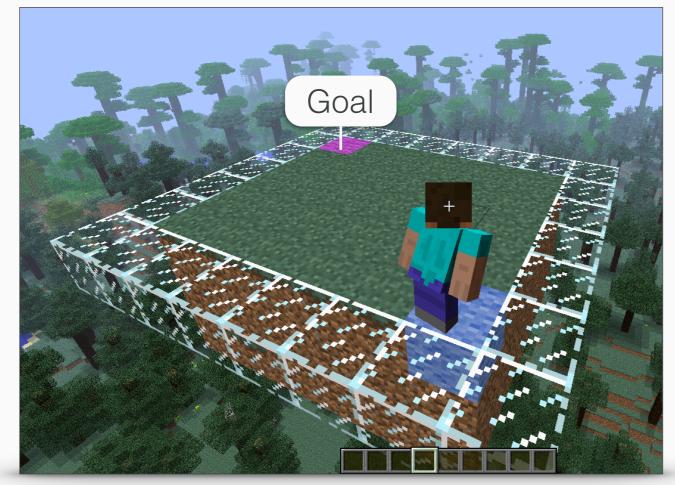
ICML RL and Abstraction Workshop 2016

Goal

Develop simple and scalable Reinforcement Learning (RL) techniques that can solve high dimensional problems.

Minecraft

MALMO: Minecraft AI Testbed

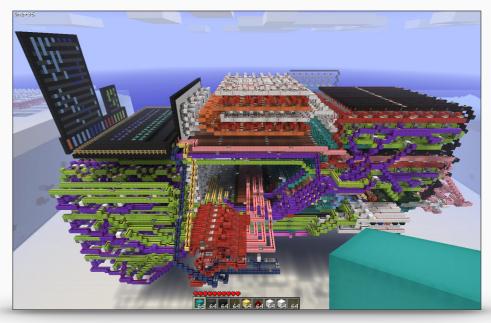


MALMO: an API for developing agents in Minecraft

Gridworld

http://research.microsoft.com/en-us/projects/project-malmo/

MALMO: Minecraft AI Testbed



Build 32 bit ALU

Gridworld

difficulty

Developed an RL agent for Minecraft-scale problems:

Developed an RL agent for Minecraft-scale problems:

1) A vision system capable of real-time RL in Minecraft.

Developed an RL agent for Minecraft-scale problems:

1) A vision system capable of real-time RL in Minecraft.

2) A new lightweight function approximator for RL.

Gradient Boosting [Friedman 2001, Mason 1999]

Developed an RL agent for Minecraft-scale problems:

1) A vision system capable of real-time RL in Minecraft.

2) A new lightweight function approximator for RL.

 An *exploration* technique for model-free RL (but: preliminary experiments are inconclusive).

1) Fix an ε -greedy policy with respect to \hat{Q}

1) Fix an ε -greedy policy with respect to \hat{Q}

2) Run an episode —> receive a dataset:

1) Fix an ε -greedy policy with respect to \hat{Q}

2) Run an episode —> receive a dataset:

$$\mathcal{D} = \langle (s_1, a_1, r_1), \dots, (s_N, a_N, r_N) \rangle$$

state reward
action

1) Fix an ε -greedy policy with respect to \hat{Q}

2) Run an episode —> receive a dataset:

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D} :

1) Fix an arepsilon-greedy policy with respect to \hat{Q}

2) Run an episode —> receive a dataset:

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D} :

$$\min_{h} \sum_{i=1}^{N} \left[h(s_i, a_i) + \hat{Q}(s_i, a_i) - (r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a')) \right]^2$$

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D} :



3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D} :

$$\min_{h} \sum_{i=1}^{N} \left[h(s_i, a_i) + \hat{Q}(s_i, a_i) - \left(r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a') \right) \right]^2$$

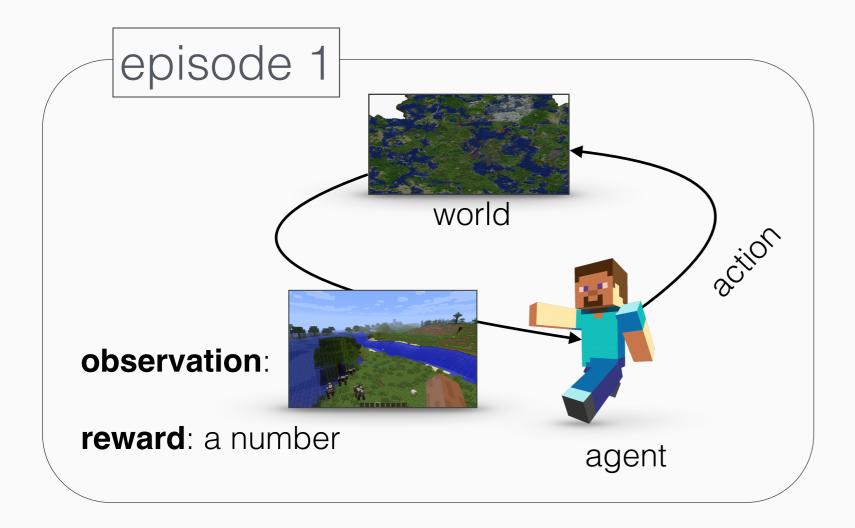
Where: $\hat{Q}(s,a) = \sum_{e=1}^{E} h_e(s,a)$

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D} :

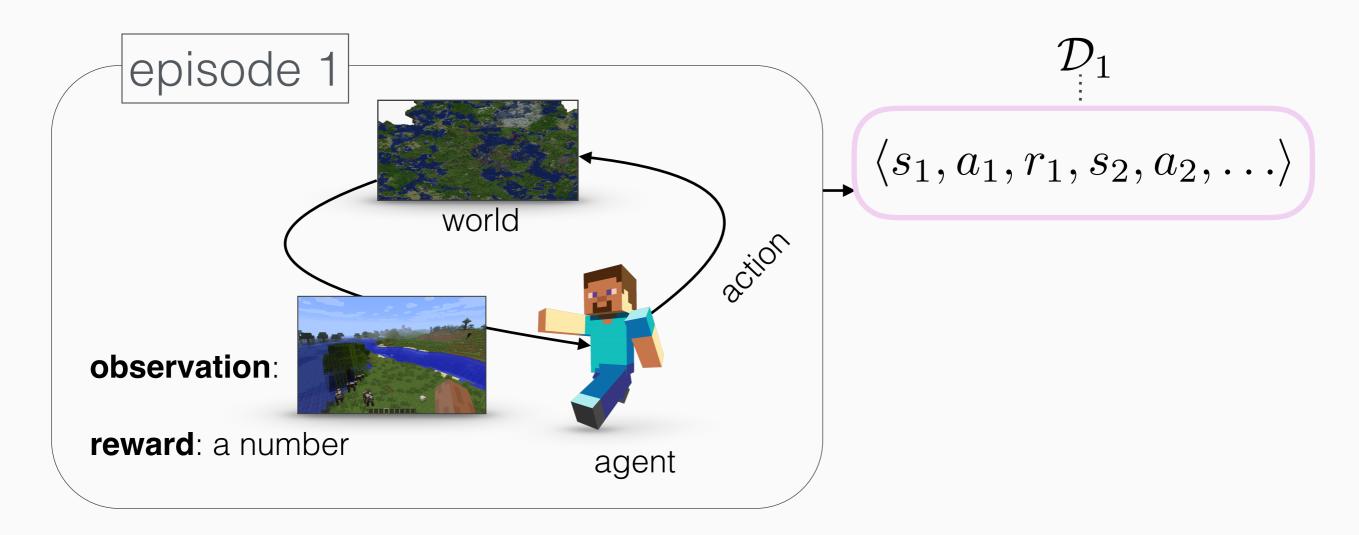
3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D} :

$$\min_{h} \sum_{i=1}^{N} \left[h(s_i, a_i) + \hat{Q}(s_i, a_i) - (r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a')) \right]^2$$

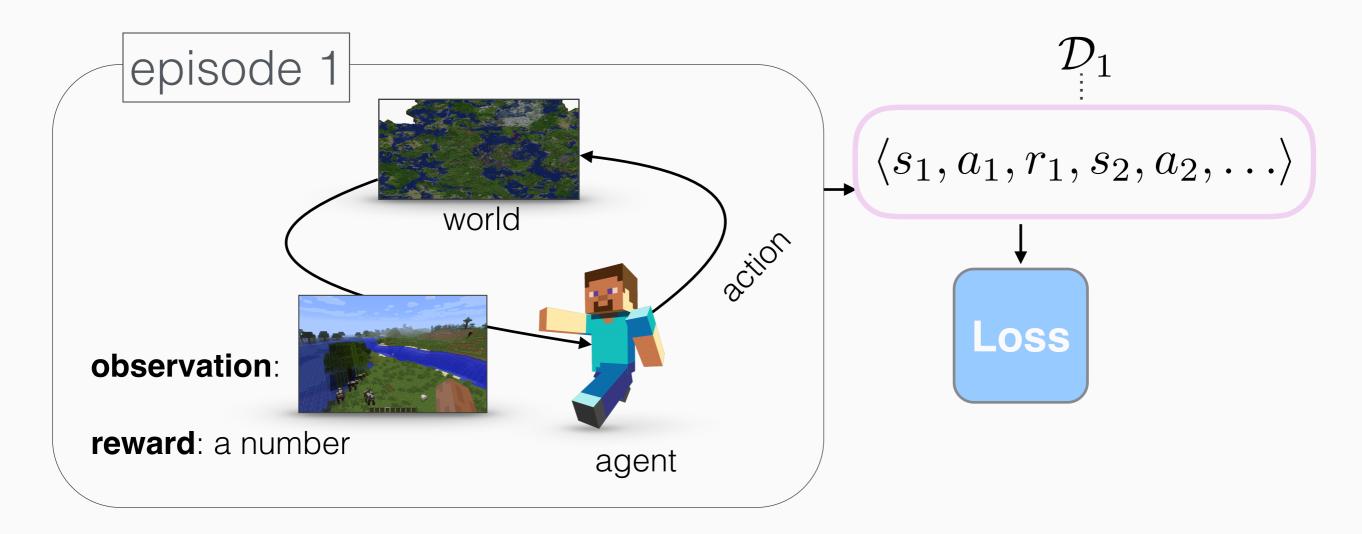
We solve this using regression trees as the weak learner



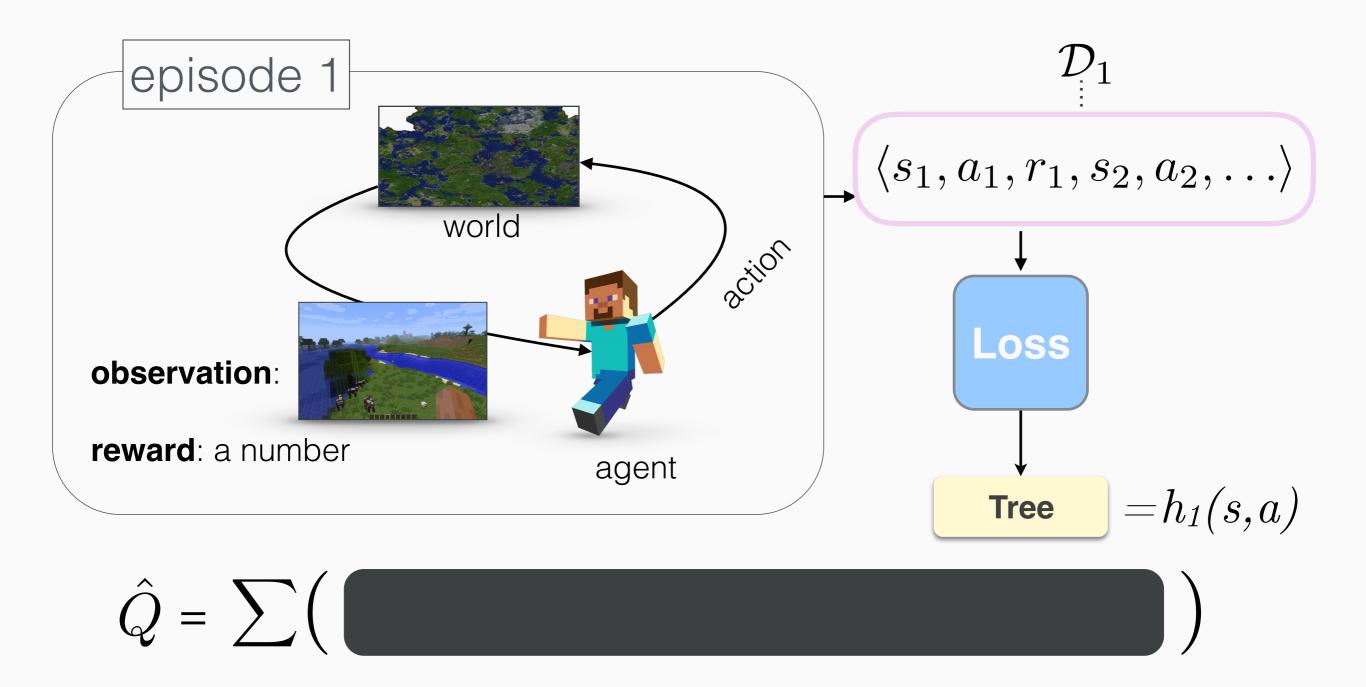
$$\hat{Q} = \sum \left(\left(\right) \right)$$

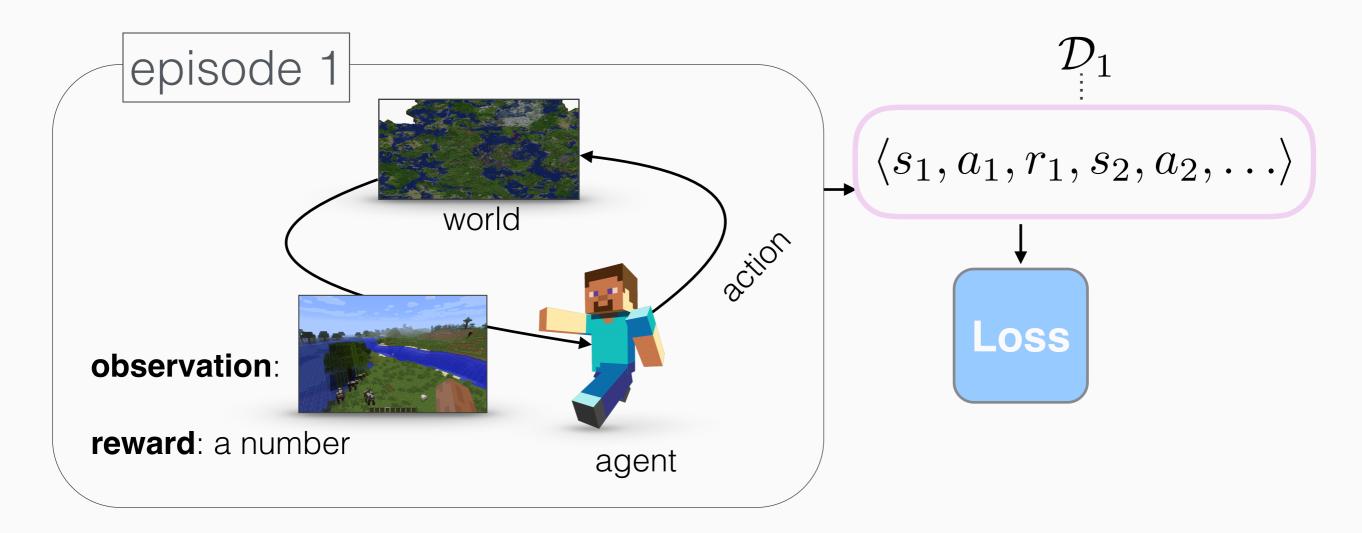


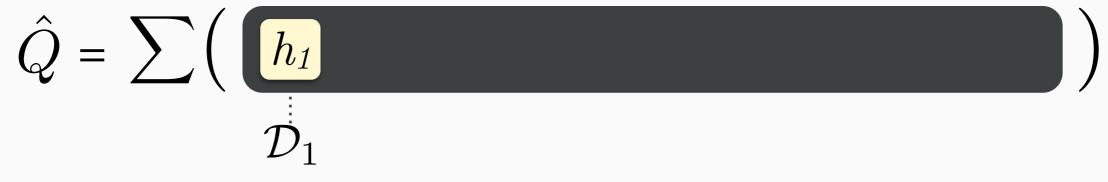
$$\hat{Q} = \sum \left(\left(\begin{array}{c} \\ \end{array} \right) \right)$$

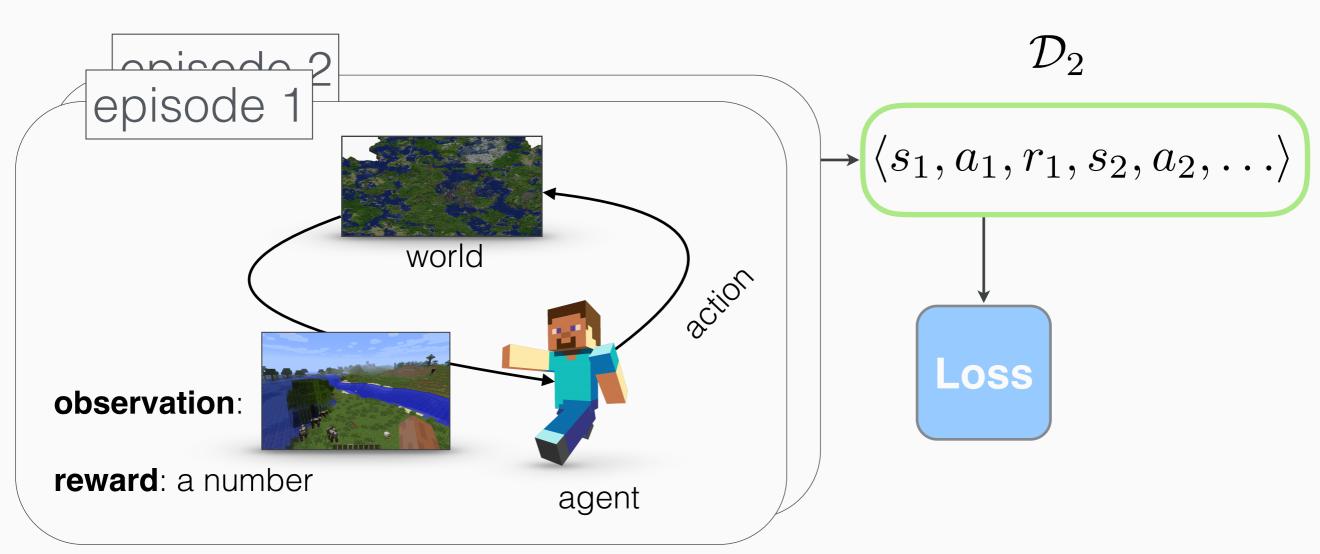


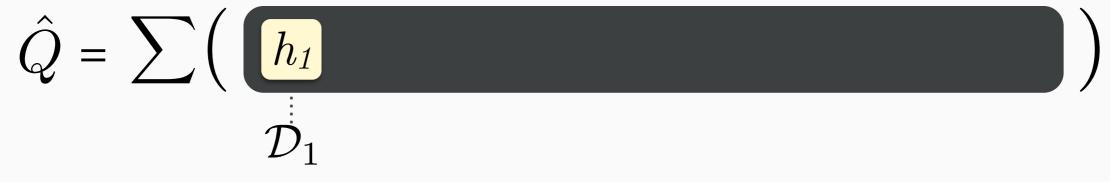
$$\hat{Q} = \sum \left(\begin{array}{c} \\ \end{array} \right)$$

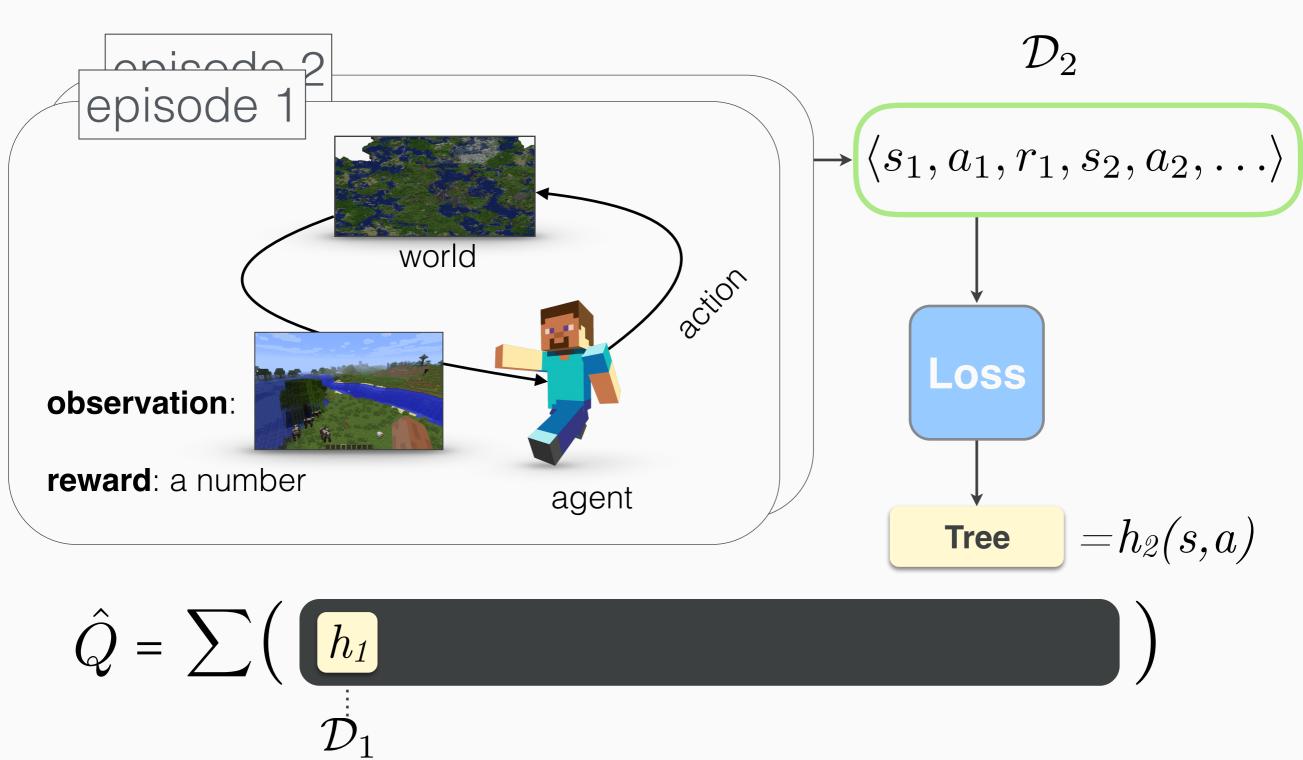


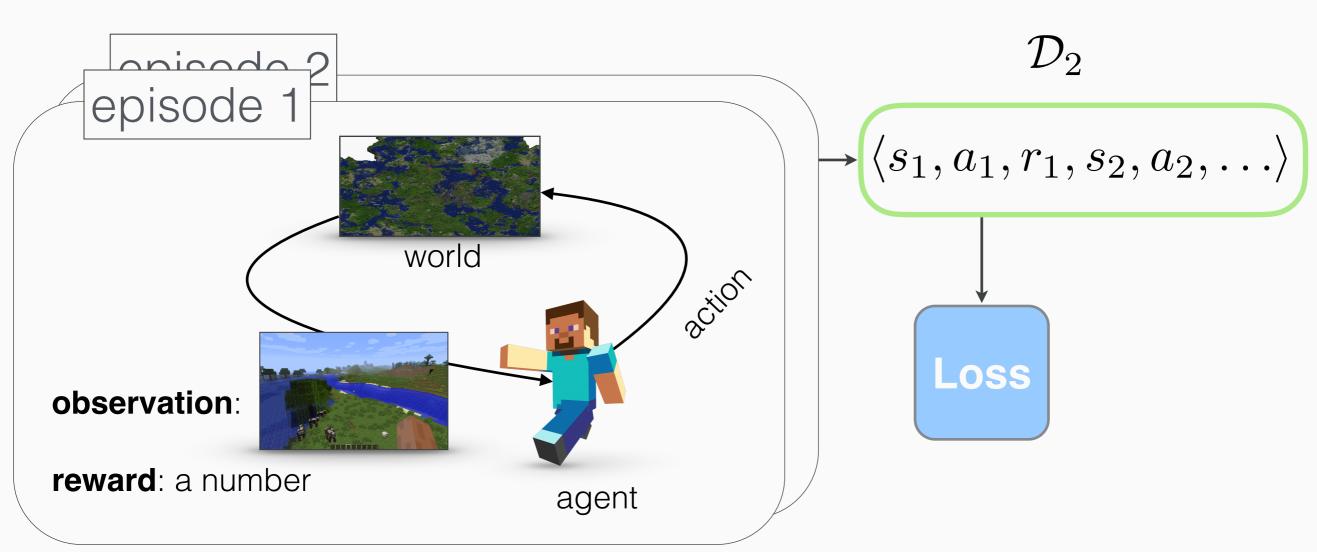




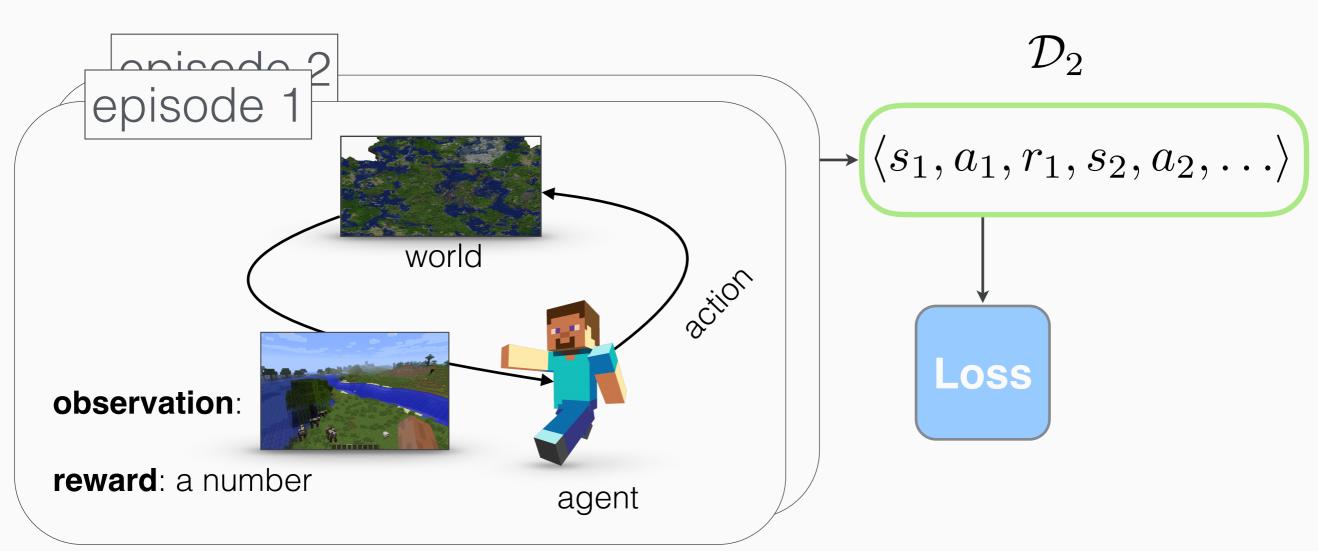








$$\hat{Q} = \sum \left(\begin{array}{c} h_1 \\ h_2 \\ \vdots \\ \mathcal{D}_1 \\ \mathcal{D}_2 \end{array} \right)$$



Intuitively Nice Properties

- Non-parametric
- Simple, easy to implement, minimal handengineering
- Interleaved data collection
- Rich theoretical literature, room for analysis.
- Only need to store one episode's worth of data.

Experiments: Baselines

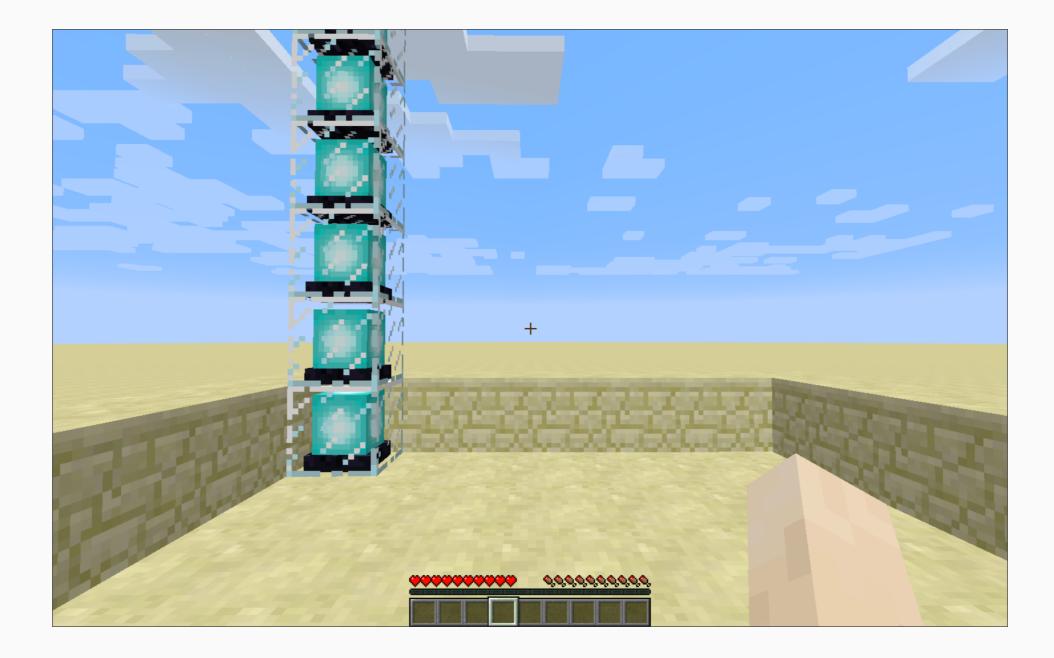
- Baseline 1
 (Linear Approximator)
- Baseline 2
 (Random Forest Approximator)
- Baseline 3 (Batch Boost Approximator)

Experiments: Baselines

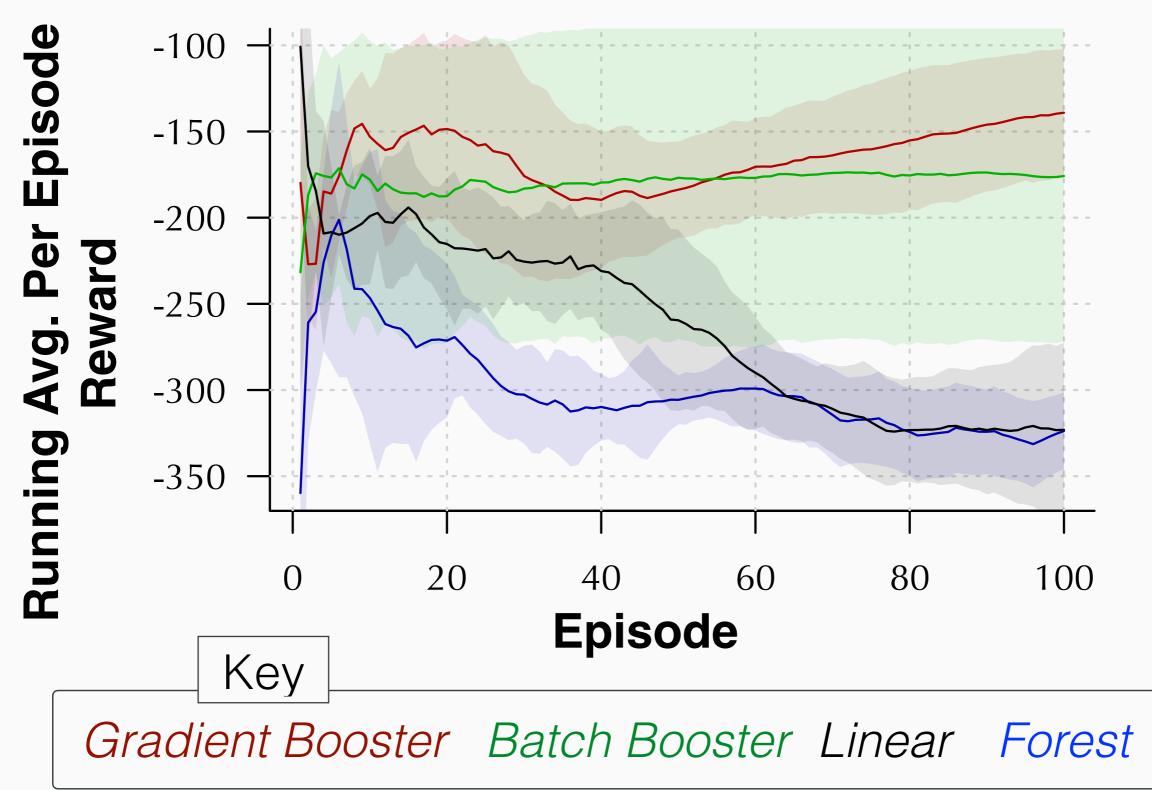
- Baseline 1 (*Linear Approximator*)
- Baseline 2 (Random Forest Approximator)
- Baseline 3 (Batch Boost Approximator)

 \rightarrow Similar to Fitted *Q*-iteration [*Ernst et al. 2005*]

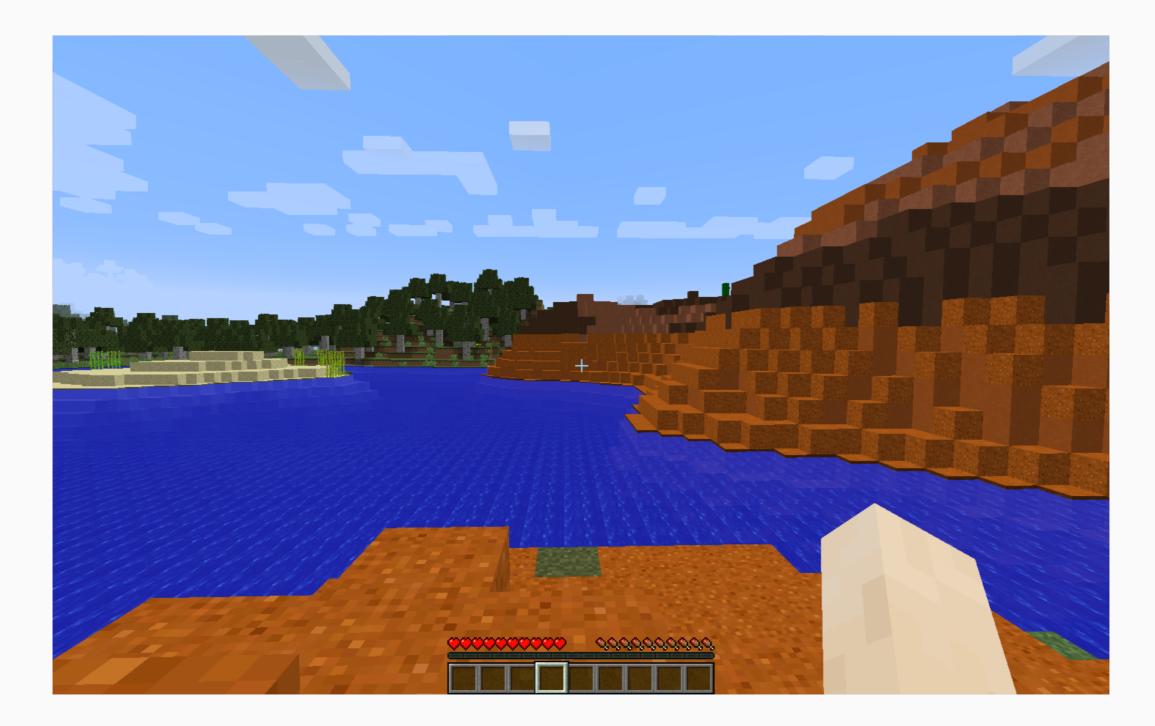
Experiments: Visual Grid



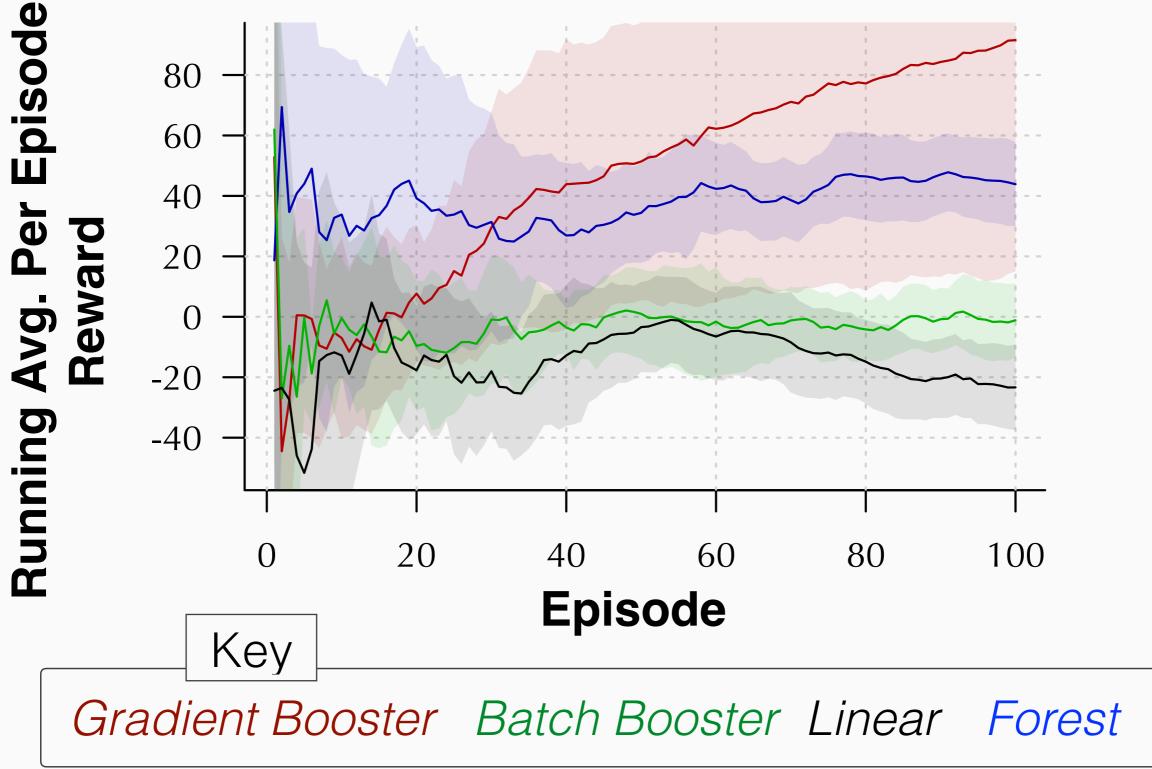
Visual Grid: Results



Experiments: Hillclimbing



Visual Hill Climb: Results



Next Steps

- Investigate relevant exploration techniques inspired by Gradient Boosting.
- Use rich foundation of theory on gradient boosting to inspire analysis of this approach.
- Further experimentation.

Acknowledgments

A big thank you to The *MALMO* team!

David Bignell, Katja Hofmann, Tim Hutton, Matthew Johnson, Pushmeet Kohli, Nate Kushman, Ewa Luger, Bhaskar Mitra, Jamie Shotton, Evelyne Viegas.

http://research.microsoft.com/en-us/projects/project-malmo/