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Goal

Develop simple and scalable Reinforcement
Learning (RL) techniques that can solve high
dimensional problems.
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MALMO: Minecraft Al Testbed

MALMOQO: an API for
5 developing agents in
= Minecraft

Gridworld

hitp://research.microsoft.com/en-us/projects/project-malmo/
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Developed an RL agent for Minecraft-scale problems:
1) A vision system capable of real-time RL in Minecratt.

2) A new lightweight function approximator for RL.

L Gradient Boosting  [Friedman 2001, Mason 1999]



Key Components

Developed an RL agent for Minecraft-scale problems:
1) A vision system capable of real-time RL in Minecratt.
2) A new lightweight function approximator for RL.

3) An exploration technigue for model-free RL
(but: preliminary experiments are inconclusive).



Gradient Boosting for RL

Treat RL as a Regression problem for the Q-function
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Gradient Boosting for RL

1) Fix an e-greedy policy with respect to ()

2) Run an episode —> receive a dataset:
D = <(S.1,CL.1,7T1) g oo (SN,CLN,”I”N)>

state | reward
action

Treat RL as a Regression problem for the Q-function
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Gradient Boosting for RL
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Gradient Boosting for RL

1) Fix an e-greedy policy with respect to Q
2) Run an episode —> receive a dataset:

3) Fit a new estimate of Q by minimizing the Bellman
Residual on the data set, D

N
min [h(si, a;) +Q(si, a;)|—|(r; + Y max Q(siy1,a"))
i=1 -

2

Treat RL as a Regression problem for the Q-function
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Gradient Boosting for RL

3) Fit a new estimate of Q) by minimizing the Bellman
Residual on the data set, D:

2

mmz [ Si, Qi) Sz,az‘) —|(rs + 7 Iax Q(Sijtlaa/))}

new weak learner Bellman residual

previous estimate

Treat RL as a Regression problem for the Q-function

16



Gradient Boosting for RL

3) Fit a new estimate of Q) by minimizing the Bellman
Residual on the data set, D:

N
" R 2
min [h(Si, CZZ‘) + Q(Sz; CLZ') — (Tz’ =+ ’VmE}XQ(Si-I-l? a/))}

Treat RL as a Regression problem for the Q-function
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Gradient Boosting for RL

3) Fit a new estimate of Q) by minimizing the Bellman
Residual on the data set, D:

- 2
mmz [ Si, Qi) Sz,az‘) —|(rs + 7y Inax Q(3i+1aa/))}
Wi # episodes-: one weak learner
ere E g per episode
Q(s,a) = E he(s,a)

e=1

Treat RL as a Regression problem for the Q-function
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Gradient Boosting for RL

3) Fit a new estimate of Q) by minimizing the Bellman
Residual on the data set, D:

2

mmz [ (si,0a4) Sz,az‘) — (r; + 7 Iax Q(Sijtlaa/))}

We solve this using regression trees as the weak learner

Treat RL as a Regression problem for the Q-function
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INntuitively Nice Properties

 Non-parametric

 Simple, easy to implement, minimal hand-
engineering

* |nterleaved data collection
* Rich theoretical literature, room for analysis.

* Only need to store one episode’s worth of data.
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EXperiments: Baselines

e Basellne 1l (Linear Approximator)
° Basellne 2 ................................................................................................................ (Handom FOreSl- ApprOleator)
e Baseline3 (Batch Boost Approximator)
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EXperiments: Baselines

e Basellne 1l (Linear Approximator)
° Basellne 2 ................................................................................................................ (Handom FOreSl- ApprOleator)
e Baseline3 (Batch Boost Approximator)

L Similar to Fitted Q-iteration [Ernst et al. 2005]

32



Visual Gri

(S

EXperimen

33



Running Avg. Per Episode

Visual Grid: Results

-100 —

-150 —

-200 —

-250

Reward

-300 —

-350 —

L

|
0

Key

20

I
40
Episode

|
60

30

100

Gradient Booster Batch Booster Linear Forest

34



Experiments: Hillclmpbing




Visual Hill Climb: Results
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Next Steps

* |nvestigate relevant exploration techniques inspired
by Gradient Boosting.

* Use rich foundation of theory on gradient boosting
to inspire analysis of this approach.

* Further experimentation.
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