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If you invent a breakthrough in Al, so that
machines can learn, that is worth 10 Microsofts

— Bill Gates

If you can invent an Al that helps us all learn to be

as motivated, knowledgeable & intelligent as Bill
Gates, that is worth 7.1 Billion Microsofts

—me
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Questimator What would you like to learr w

You searched for Reinforcement learning, let's

see what you know about some related topics.
10 questions.

learning is

0 an area of machine leaning inspired by behaviorist psychology, concemed with how software agents ought to take
actions in an environment so as to maximize some notion of cumulative reward

an extension to the backpropagation aigorithm that is applicable to recurrent neural networks

a model of asset retums that

volatility of durations

a pattern matching technique, common in machine learning applications

Markov decision processes (MDPs), named after Andrey Markov,

(1) identify the title of a book other than Plaster Cramp that is in the Library of Babel

1. Since we know the Plaster Cramp and this mysterious book we are looking for are both in the Library
of Babel, we can try putting “plaster cramp” and “library of babel" together to see if we can find the title of
this mysterious book.

2. Search for [plaster cramp library of babel] in Google:
google.com/#safe=active&q=plaster+cramp+library+of+babel

3. Click on the first result which appears to be the text of the short story “The Library of Babel" by Jorge
Luis Borges: hyperdiscordia.crywalt.com/library_of_babel.html

4.CTRL+F [plaster cramp] in the story, to find this quote: It is useless to observe that the best volume
of the many hexagons under my administration is entitled The Combed Thunderclap and another The
Plaster Cramp and another Axaxaxas mld.

5. Notice that Axaxaxas mlé sounds like a book in a fictional language, so it must be the book we're
looking for.

(2) find out what other short story by Jorge Luis Borges refers to "Axaxaxas ml6"
6. Search for [axaxaxas ml6) in Google
7.Click on the first result: en.wikipedia.org/wiki/TI%C3%Bén,_Ugbar,_Orbis_Tertius
8. Verify that this is the Wikipedia article for a short story by Jorge Luis Borges.
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Efficient
learning
iImportant in
high stakes
domains

Abstractions
can help speed
learning




Challenge: Abstraction Sufficient To Code Optimal
Policy May Not Allow Learning That Policy

X1 X9

McCallum
1995

X3

Also see Li, Walsh, Littman 2006



Little Prior Work on Intersection

Very little theoretical work



Towards Learning Representations for
Efficient Reinforcement Learning

* Learning options to speed learning
e Learning state abstractions to speed learning

Speed = Amount of data need to learn to make
near optimal decisions



Options / Macro-Actions
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But Do Options Really Help Speed*
Learning?

* Prior evidence is mixed

* Sometimes accelerated learning, and
sometimes slow learning (Jong, Hester, Stone
2008)



Options Discovery?

 Where do these options (if helpfull) come from?

* Encouraging empirical benefit but heuristic

— Maximize “compression” (Thrun & Schwartz, Pickett &
Barto)

— Sub-goal discovery (Stolle & Precup, Mannor et al)

— Homomorphisms (Soni & Singh) & shared features
(Konidaris & Barto)



Contributions

1. How and when options speed®
reinforcement learning

2. Discover options across tasks to provably
accelerate™ RL in future tasks

* As measured by sample complexity of learning.



Background: SMDP & Options

Time —*
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Figure from Sutton, Precup & Singh 1999
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Background: SMDP & Options
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Background: SMDP & Options
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Background: SMDP & Options

Bellman operator for SMDPs:

Erp(s',r S,a)yf]maxa. O(s',a')

\ J
|

Expected discount factor for (s,a) to
SI

O(s,a)=r(s,a) +E

S'




Contributions

1. How and when options speed®
reinforcement learning

2. Discover options across tasks to provably
accelerate™ RL in future tasks

* As measured by sample complexity of learning.



Prior: RL Sample Complexity of
Exploration in MDPs

* Number of sub e-optimal decisions

EtI(VAf (s,) =< V*(St) — e)

e RL algorithm is PAC-MDP (Kearns & Singh,
Brafman & Tennenholtz) if:

— Sample complexity poly func of MDP params with
high probability



New: Sample Complexity Of
Exploration in SMDPs

> 7T-t 1 (VAt(st) < V*(st) — e)

Weighed by waiting time (#
steps till choose new action)

« RL algorithm PAC-SMDP if polynomial in
SMDP params with high probability



Condition on SMDP for Any Algorithm
to be PAC

* Unbounded waitingtime T

— Could never return from a bad decision!
— SC infinite!



Condition on SMDP for Any Algorithm
to be PAC

* Unbounded waitingtime T
— Could never return from a bad decision!
— SCinfinite!

* Assume T

— Has expected value < L
— Distribution sub-Gaussian with parameter C



Algorithms For PAC-SMDP

Unknown s-a

Known s-a
Wlth State-Action that
Space
sufficient data P need furt.her
exploration

* Ala MDPs, drive exploration towards unknown
s-a by making reward for unknown s-a large in
alternate SMDP



Marginal Waiting Time

P(tls,a)



Expected Discount Factor

V=Y V' P(Tls,0)

Marginal (over s’) expected discount
factor for (s,a)



SMDP-Rmax Sample Complexity

V=Y V' P(Tls,0)

Marginal (over s’) expected discount
factor for (s,a)
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SMDP-Rmax vs Rmax
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Benefit* If Less Pairs To Learn

max Sd + L +
3 — \3
sa (1 - ] - C
#;Ye-—o/ptio(n ysa) y \/_

V3E N 1 1

# state-(primitive action) pairs
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* Not quite: slightly different notions of near optimality



Duration/Discount

— \2
L+L+L< (1_ys)

-y JC o (1-y)

e Benefit* when

— Waiting time not much longer than %—y
compared to how much smaller effective
discount factor is than discount factor

* Not quite: slightly different notions of near optimality



Consistent With Empirical Results of
Jong et Al.

* Options + primitive actions can be worse than
primitive only
— SC expected to increase use all



Consistent With Empirical Results of
Jong et Al.

* Options + primitive actions can be worse than
primitive only

* Limiting some states to options & others to
primitive can speed learning

— SC 9.6 *10° all primitive > 1.8*10° limiting



Contributions

1. How and when options speed®
reinforcement learning

2. Discover options across tasks to provably
accelerate* RL in future tasks

* As measured by sample complexity of learning.



Lifelong Learning Setup

My, 2> M, Mg=> M, =2 ..
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Exists options set O that allows
g-optimal policies for all M
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Lifelong RL With Options
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Phase 1:
Run E3 with primitive a &
find
e-optimal policies

33



Lifelong RL With Options

My > M, ...
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Phase 1:
Run E3 with primitive a &
find
e-optimal policies
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Lifelong RL With Options

My > M, ...
\ )
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Phase 1: Phase 2:
Run E3 with primitive a & Run SMDP-Rmax with O~
find
e-optimal policies
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New Option Discovery Alg

* At least as hard as set-covering

* Instead, propose greedy approach that

constructs options to reduce SC of covering
MDPs in phase 1



Simulation

from Sutton,
Precup,
Singh 1999.
104 states, 8
actions
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Significantly & Substantially Better

# State- | Sample Complexity | Avg. Reward
Options Bound Phase 2
Primitive Only 832 832000 10470
PolicyBlocks 985 942450 11229
(Pickett & Barto)
PAC-Inspired 550 511605 13145




Performance Quite Close to Hand
Designed Options

# State- | Sample Complexity | Avg. Reward
Options Bound Phase 2
Primitive Only 832 832000 10470
PolicyBlocks 985 942450 11229
(Pickett & Barto)
PAC-Inspired 550 511605 13145
Hand Coded 189 85765 14718




Summary

1. Options can speed™* reinforcement learning if
reduce pairs to learn and/or reduce effective
discount factor without too long of an

additional waiting period

2. Can discover options across tasks to provably
accelerate™ RL in future tasks

* As measured by sample complexity of learning.



Towards Learning Representations for
Efficient Reinforcement Learning

* Learning options to speed learning
* Learning state abstractions to speed learning

* With a focus on approaches with guarantees



Approach

e Efficient exploration by representing
uncertainty over (model) parameter values



Approach

e Efficient exploration by representing
uncertainty over model & parameter values

* Adapt representation based on data

— Bayesian posterior

 Reduce computation by considering particular
forms of state abstractions



Setting

 Discrete state and action MDPs

* Relative outcome dynamics
— s + outcome = next state s’
— Know set of outcomes

— Don’t know probability
distribution over outcomes

T

W

44



Approach: Cluster States By Relative
Dynamics to Speed Learning

Intuition: many states may have same relative
dynamics

If knew which states had same relative
dynamics, can provably speed learning (Leffler
et al 2007, Brunskill et al. 2008/2009)

But we don’t...

Want to cluster states into those with similar
dynamics, but don’t know dynamics of states



ldea: Change Abstraction Based on
Data

* Little data, more states clumped together
—Can’t tell if states are different
* More data, split states with different dynamics

* In a way that doesn’t prevent us from learning
optimal policy.



Prior Work: Thompson Sampling for

Reinforcement Learning
(Osband, Russo, Van Roy 2013, Osband and Vany Roy 2014)

* Define MDP

* Prior over MDP model parameters

 Sample from prior

 Compute optimal policy for those parameters
* Act

* Update posterior over parameters given data



New Work: Thompson Clustering for
Reinforcement Learning

Define original state and action space
Prior over state clusters/aggregations & parms

Sample state aggregation for each action from
prior and parameters for aggregations
— Intuitively, sample model and model parameters

Compute optimal policy for those parameters

Act
Update posterior over parameters given data



TCRL Could Speed Learning

Define original state and action space
Prior over state clusters/aggregations & parms

Sample state aggregation for each action from
prior and parameters for aggregations

- If aggregate a lot of states, share their data, get
better model of dynamics if states are the same

Compute optimal policy for those parameters
Act

Update posterior over parameters given data



Involves Sampling & Updating
Distribution over Abstractions

Define original state and action space
Prior over state clusters/aggregations & parms

Sample state aggregation for each action
from prior and parameters for aggregations

Compute optimal policy for those parameters

Act
Update posterior over parameters given data



Conceptually Appealing But Prior
Updating and Sampling Expensive

# clusterings = n" where n = # states

Introduce two algorithms that are (fairly)
computationally tractable

— TCRL-Relaxed
— TCRL-Theoretic

Use specific priors over state-action dynamics
clusterings

And sometimes approximation over sampling



Consider Clustering “Nearby” States,
Likely to Have Same Dynamics



TCRL-Relaxed

* Consider fairly flexible way of clustering states
e But sample from this in an approximate way



TCRL-Relaxed Procedure
1. Build DAG



TCRL-Relaxed:
2. Sample Clustering Given Data D

Ancestor cluster P(D|C)P(C)

P(C|D) = P(D|C)P(C) + P(D|-C)P(-C)

Current cluster

N

P(D|C) = JP(DIB)P(HIal,...,an)dH
Sample C given P(C|D)

Easy to compute
for Dirichlets

C = binary variable Note: Greedy in the sense
1if cluster states that future clusterings are
0 if not not considered.



TCRL-Relaxed:
2. Proceed Breadth First

Ancestor cluster
) P(DIC)P(C)
‘ PUCID) = 5 1P + POOI-O)P(-0)

P(D|C) = fP(DIB)P(HIal,...,an)dH

Current
cluster

Sample C given P(C|D)

C = binary variable
1 if cluster states
O if not



TCRL-Relaxed:
2. Proceed Breadth First

Ancestor cluster
) P(DIC)P(C)
‘ PUCID) = 5 1P + POOI-O)P(-0)

P(D|C) = ]P(DIH)P(HIal,...,an)dH

Current
cluster

N

-0

Sample C given P(C|D)

C = binary variable
1 if cluster states
O if not



TCRL-Relaxed:
2. First Consider Immediate Ancestor

P(D|C)P(C)
P(D|C)P(C) + P(D|-C)P(~C)

P(C|D) =

Ancestor cluster

N

P(D|C) = JP(DIH)P(HIal,...,an)dH

Sample C given P(C|D)

Current

cluster .

-0

C = binary variable
1 if cluster states
O if not



TCRL-Relaxed:
If Cluster, Consider Next Ancestor

Ancestor cluster s

P(D|C)P(C)

P(C|D) = P(D|C)P(C) + P(D|-C)P(-C)

P(D|C) = JP(DIH)P(HIal,...,an)dH

Sample C given P(C|D)

Current

cluster .

-0

C = binary variable
1 if cluster states
O if not



TCRL-Theoretic:
Restrict Clusterings Considered,
Strong Guarantees



TCRL-Theoretic:
1. Build Balanced Tree of Domain



TCRL-Theoretic:

2. Consider State Dynamics Aggregation
Only By Depth




TCRL-Theoretic:

2. Consider State Dynamics Aggregation
Only By Depth

1. No clustering

Q Q P(D|C)P(C)

P(CI|D) = P(D|C)P(C) + P(D|-C)P(-C)

P(D|C) = JP(DIB)P(QIal,...,an)dB



TCRL-Theoretic:

2. Consider State Dynamics Aggregation
Only By Depth

1. No clustering

2. Clustered by Parents

P(C|D) =

P(D|C)P(C)

P(D|C)P(C) + P(D|-C)P(=C)

P(D|C) = JP(DIB)P(BIal,...,an)dB



TCRL-Theoretic:

2. Consider State Dynamics Aggregation
Only By Depth

l 1. No clustering

2. Clustered by Parents
3. Clustered by Grandparents

But, not a greedy approximation as clustering decisions are
independent.

Choose among
this logarithmic
number of
options using
Bayes’

Rule




Thompson Clustering for
Reinforcement Learning

Define original state and action space
Prior over state clusters/aggregations & parms

Sample state aggregation for each action
from prior (using Theoretic or Relaxed
approach) and sample parameters for
aggregations

Compute optimal policy for those parameters

Act
Update posterior over parameters given data



Thompson Clustering for RL:
TCRL-Theoretic has Bounded Bayesian Regret

* Episodic regret definition
R(T) = YT v — v,
* Thm: TCRL-Theoretic has Bayesian regret <=

O((Tmaz — Tmin)TIS‘\/|A‘TIOg(|S| A|T))




Thompson Clustering for RL:
TCRL-Relaxed Guaranteed to Still
Asymptotically Converge to Optimal
Policy



Alternatives

Best of Sampled Set, BOSS (Asmuth et al.
2009)

— Bayesian prior
— Solve with MCMC

— Very general, computationally expensive, so get
approximate solution



TCRL-Relaxed >= MCMC Approach &
Computationally Cheaper

+ MCMC-Separate
MCMC-Together
30000 | === TCRL-Relaxed
m== TCRL-Theoretic
PSRL 200 State
© i .
2 50000) Optimal | Domain
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-10000
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Episodes 70



6 Arms Domain

e (0-3,1,¢
(3,1,800) OQ) ! (5,1,50)
(0-2,1,0) B

(4-5,1,0) (0,1,0)

(1,0.15,0) ™
(0,1,0)

(2-5,1,0)

(3,0.05,0)

(S 1,0)
(0—? 1,0)
(4,0.03,0)

(0-4,1.0)

(5,1,6000) @

(2,0.1,0)

(0-1,1,0)
(3-5,1,0)

Cumulative Reward

4000000

3500000+

3000000+

2500000

2000000

1500000

1000000F

500000

MCMC-Together|
11+ MCMC-Separate
=== TCRL-Relaxed
=== TCRL-Theoretic

' PSRL

Optimal

500

1000
Episodes

1500
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All States are Different for >= 1 Action

(0-3,1.,50)

(5,1,50)
(0-2,1,0)
(4-5,1,0)
(3,0.05,0)
(5,1,0)
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.1, lém)w ,_Q\j(l.l.lfﬁ)
(4,0.03,0) (0,1,0)
(2_5~l~0)
O-1.1.0 N (2.0.1.0)
(3-5.1,0) _
(5.1,6000) @ GD (2,1,300)
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All States are Different for >= 1 Action
But Never Converge to 6 State Rep. Why?

NN / \f \ (0-2 1.50)
- (0-2,1,0)

N AN
(4-5,1,0) O.L0)// 4.1.0)

(3,0.05,0)

(5.1.0)
— (0-3,1,0) - (1.0.15.0)
@160 (L5 ) - 0 ) =/ 5 /l 1(1 1.133)
A 4.0.03.0) 0.1.0) ~—"%—
(2-5,1,0)
(0-4.1.0) /(50010

(0—1.1.0) (2,0.1,0)

(3-5,1,0)

(5.1,6000) l./ \'/6 \! / \/ \( .1.300)
A \ /\ )
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All States are Different for >= 1 Action
But Never Converge to 6 State Rep. Why?

N ,/ Y  (0-3,1.50)
3,1,800) [ [ 4 | \ /\ (5,1,50)
(0-2,1,0)

N A
(4-5,1,0)  (0,1.0) // 4 1.0)

(3,0.05,0)

(5,1,0)
\(()—310) TN (l()lﬁ())/ \/’\

(4,1,1660) | 5 | (o ’<—\ ) 1“ .
i /(400% 0) Y (0.1.0) .
(2-5,1.0)
(0-4.1.0) (5.0.01,0)

(0-1.1.0) (2.0.1.0)

o~ (3-5,1,0)
(5,1,6000) [ 6 | ./ IV

N A | (2.1.300)

\ /l\ J
Never worth separating s-a pairs that don’t
vield high reward! 2



Thompson Clustering for RL Summary

Dynamically change abstraction for data have

Do efficient exploration given explicit
representation of uncertainty over abstraction

Accomplish this by using specific set of
reasonable but efficiently to compute relative
dynamics outcome abstractions

For more, see our |JCAI 2016 paper
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Still Lots of Work to do on Learning
Abstractions to Provably Reduce Data
Need to do Reinforcement Learning in

Big Spaces
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Summary: Combining Abstraction
Learning & Efficient Exploration for RL

* Learning options to speed learning
e Learning state abstractions to speed learning

* Data-dependent abstraction

* Leverage uncertainty over abstraction to
reduce data needed to get near-optimal
performance



