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Options framework

e Suppose we have an MDP (S, A, r, P,~)
e An option w consists of 3 components

— An initiation set of states I,, C S (aka precondition)
— A policy m, : § x A — [0, 1]
Tw(a|s) is the probability of taking a in s when following option w
— A termination condition 8, : S — [0, 1]:
B, (s) is the probability of terminating the option w upon entering s
e Eg., robot navigation: if there is no obstacle in front (1), go forward
(7,,) until you get too close to another object (3,,)

e One can use a cumulative density function for the termination as well
(cf. Comanici and Precup, 2010)

Cf. Sutton, Precup & Singh, 1999; Precup, 2000
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MDP + Options = Semi-Markov Decision Precess
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e Introducing options in an MDP induces a related semi-MDP

e Hence all planning and learning algorithms from classical MDPs transfer
directly to options (Cf. Sutton, Precup & Singh, 1999; Precup, 2000)

e But planning and learning with options can be much faster!

ICML Abstraction in RL Workshop, June 2016 2



Frontier: Option Discovery

e Options can be given by a system designer

e |f subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

o What is a good set of subgoals / options?
e This is a representation discovery problem
e Studied a lot over the last 15 years

e Bottleneck states and change point detection currently the most
successful methods
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Bottleneck states
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e Perhaps the most explored idea in options construction

e A bottleneck is a special state, which is visited more often than others,
allows “circulating on the graph”

e Lots of different approaches!
— Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
— Graph partitioning / state graph analysis (Simsek et al, 2004, Menache

et al, 2004, Bacon & Precup, 2013)
— Information-theoretic ideas (Peters et al., 2010)

e People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)
e Main drawback: expensive both in terms of sample size and computation
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Goals of our current work

e Explicitly state an optimization objective and then solve it to find a set
of options

e Handle both discrete and continuous set of state and actions

e Learning options should be continual (avoid combinatorial-flavored
computations)

e Options should provide improvement within one task (or at least not
cause slow-down...)
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Actor-critic architecture
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e Clear optimization objective: average or discounted return
e Continual learning
e Handles both discrete and continuous states and actions
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Option-critic architecture
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e Parameterize internal policies and termination conditions
e Policy over options is computed by a separate process (planning, RL, ...)
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Formulation

e The option-value function of a policy over options 7 is given by

QQ(Saw) — Z Ww(a‘S)QU(Sa W, CL)

where

Qu(s,w,a) =r(s,a) + 72 P(s'|s,a)U(w,s")

S

e The last quantity is the utility from s’ onwards, given that we arrive in
s’ using w

Uw,s') = (1= Bu(s)Qals’,w) + Bu(s) Vals)
e We parameterize the internal policies by 8, as m,, ¢, and the termination

conditions by v, as 3, .,
e Note that 0 and v can be shared over the options!
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Main result: Gradient updates

e Suppose we want to optimize the expected return: E {Qq(s,w)}
e The gradient wrt the internal policy parameters 6 is given by:

E {alog ﬂgée(a‘S)QU(Sa W, CL)}

This has the usual interpretation: take better primitives more often inside
the option

e The gradient wrt the termination parameters v is given by:

i {_5&5;(8’) Ag(s'. w)}

where A = Qo — Vo is the advantage function
This means that we want to lengthen options that have a large advantage
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Results: Options transfer
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e 4-rooms domain, tabular representations, value functions learned by Sarsa

e Learning in the first task no slower than using primitives

e Learning once the goal is moved faster with the options
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Results: Linear function approximation
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Internal option policies, termination conditions and policy over options
all learned simultaneously
Only number of options and function approximator are given
Linear function approximation for the value functions, logistic for the
terminations
Interesting, extended options are learned
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Results: Nonlinear function approximation

— Option-Critic - testing score
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e Atari simulator, Pong, DQN to learn value function over options

e Internal policies for options are given: repeat the same primitive action
(one option per primitive)

e Termination policies represented as a logistic over the DQN features

e Successful simultaneous learning of terminations and option policies

e But, as expected, options shrink over time
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A new proposal: Deliberation cost

e Assumption: executing a policy is cheap, deciding what to do is expensive

— Many choices may need to be evaluated (branching factor over actions)

— In planning, many next states may need to be considered (branching
factor over states)

— Evaluating the function approximator might be expensive (e.g. if it is

a deep net)
e Deliberation is also expensive in animals:

— Energy consumption (to engage higher-level brain function)
— Missed opportunity cost: thinking too long means action is delayed
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Example: Immediate cost = number of actions

e With primitive actions: average cost of |.A| per time step

e With options only: average cost of |2| incurred only when re-deciding
what to do

e If we re-decide on average every kth step, and if |2] < k|.A|, deliberation
with options is cheaper

e Even if we use both options and primitive actions, average deliberation
is cheaper if [ < (k —1)|A|
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Problem formulation

o Let ¢(s,w) be the immediate cost of deliberating to choose w in s

e In the call-and-return model, it is easy to see that we have a value
function that expresses total deliberation cost given by the following
Bellman equation:

Qcls,w) = —c(s,w) + Y Py(s']s,w Zm "15")Qe(s, W)

where P, is the discounted transition sub-probability (sums to < «)
e We can obtain (). using learning, value iteration etc
e New objective: maximize reward with reasonable effort

mgXE [QQ(Sv w) + ch(Sv w)]

e £ > ( controls the trade-off between value and computation effort

ICML Abstraction in RL Workshop, June 2016 15



Interesting properties

e Immediate cost of deliberation is computed based on properties of the

environment
e We do not need pseudo-rewards for sub-goals!
e Value function over options is still obtained accurately

o If £ =0 we simply optimize returns as before
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lllustration: 4 rooms

e |f we want to do planning, backing up from multiple states is expensive

so we reflect this in an immediate cost:

e(5,0) = 3 Ip(s]s.)>c| )

e ¢ € [0,1] is a constant that can be used to ignore transitions of low

probability

e \We use this in the 4 rooms domain, using option-critic to learn the

options and dynamic programming to find mq

e Option policies and terminations parameterized as before
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lllustration: 4 rooms
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Delib leoff ber of Failure rat

e Emphasizing deliberation cost, shifts the policy towards using options

e Number of iterations of planning is smaller for higher deliberation cost
penalties

e When options are learned in one task and then used to plan in a different
task, options obtained with deliberation costs are more robust
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Relationship to other ideas

e Human problem solving: Solway et al (2014) proposed a Bayesian model
selection framework to explain subgoal learning by humans trying to
navigate an unknown map

e Humans found subgoals “around” bottleneck states

e Inspection of their criterion (Bayesian fit to the data) shows strong
similarity with using a cost equal to the branching factor between
options, plus the branching factor within the active option

e Deliberation costs can also explain the value of options for exploration

— Travelling quickly around the environment means values will become
accurate more quickly

— The best action becomes clear earlier, which would make it easier to
choose
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Conclusions

e Option-critic allows using policy gradient ideas for continual option
construction

e Including deliberation cost as an optimization criterion gives rise to more
robust options

e Lots of things to do:

— More empirical evidence!

— Incorporating initiation sets in option-critic (currently options initiate
at every state)

— Theoretical properties of deliberation cost (relationship to action-gap,
time-regularized options)

— Relationship to transfer learning
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