
Advances in option construction:
The option-critic architecture

Pierre-Luc Bacon and Doina Precup
McGill University

With thanks to Jean Harb

ICML Abstraction in RL Workshop, June 2016

Options framework

• Suppose we have an MDP 〈S,A, r, P, γ〉
• An option ω consists of 3 components

– An initiation set of states Iω ⊆ S (aka precondition)
– A policy πω : S ×A → [0, 1]
πω(a|s) is the probability of taking a in s when following option ω

– A termination condition βω : S → [0, 1]:
βω(s) is the probability of terminating the option ω upon entering s

• Eg., robot navigation: if there is no obstacle in front (Iω), go forward
(πω) until you get too close to another object (βω)

• One can use a cumulative density function for the termination as well
(cf. Comanici and Precup, 2010)

Cf. Sutton, Precup & Singh, 1999; Precup, 2000

ICML Abstraction in RL Workshop, June 2016 1

MDP + Options = Semi-Markov Decision Precess

SMDP

Time

MDP
State

Options

over MDP

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed in either way.

tion 4 considers the problem of effectively combining a given set of options
into a single overall policy. For example, a robot may have pre-designed con-
trollers for servoing joints to positions, picking up objects, and visual search,
but still face a difficult problem of how to coordinate and switch between
these behaviors [17,22,38,48,50,65–67]. Sections 5 and 6 concern intra-option
learning—looking inside options to learn simultaneously about all options con-
sistent with each fragment of experience. Finally, in Section 7 we illustrate a
notion of subgoal that can be used to improve existing options and learn new
ones.

1 The Reinforcement Learning (MDP) Framework

In this section we briefly review the standard reinforcement learning frame-
work of discrete-time, finite Markov decision processes , or MDPs , which forms
the basis for our extension to temporally extended courses of action. In this
framework, a learning agent interacts with an environment at some discrete,
lowest-level time scale, t = 0, 1, 2, . . . On each time step, t, the agent perceives
the state of the environment, st ∈ S, and on that basis chooses a primitive
action, at ∈ Ast . In response to each action, at, the environment produces one
step later a numerical reward, rt+1, and a next state, st+1. It is convenient to
suppress the differences in available actions across states whenever possible;
we let A =

�
s∈S As denote the union of the action sets. If S and A, are fi-

nite, then the environment’s transition dynamics can be modeled by one-step
state-transition probabilities,

pa
ss� = Pr{st+1 = s� | st = s, at = a},

4

• Introducing options in an MDP induces a related semi-MDP

• Hence all planning and learning algorithms from classical MDPs transfer
directly to options (Cf. Sutton, Precup & Singh, 1999; Precup, 2000)

• But planning and learning with options can be much faster!

ICML Abstraction in RL Workshop, June 2016 2

Frontier: Option Discovery

• Options can be given by a system designer

• If subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

• What is a good set of subgoals / options?

• This is a representation discovery problem

• Studied a lot over the last 15 years

• Bottleneck states and change point detection currently the most
successful methods

ICML Abstraction in RL Workshop, June 2016 3

Bottleneck states

• Perhaps the most explored idea in options construction

• A bottleneck is a special state, which is visited more often than others,
allows “circulating on the graph”

• Lots of different approaches!

– Frequency of states (McGovern et al, 2001, Stolle & Precup, 2002)
– Graph partitioning / state graph analysis (Simsek et al, 2004, Menache

et al, 2004, Bacon & Precup, 2013)
– Information-theoretic ideas (Peters et al., 2010)

• People seem quite good at generating these (cf. Botvinick, 2001, Solway
et al, 2014)

• Main drawback: expensive both in terms of sample size and computation

ICML Abstraction in RL Workshop, June 2016 4

Goals of our current work

• Explicitly state an optimization objective and then solve it to find a set
of options

• Handle both discrete and continuous set of state and actions

• Learning options should be continual (avoid combinatorial-flavored
computations)

• Options should provide improvement within one task (or at least not
cause slow-down...)

ICML Abstraction in RL Workshop, June 2016 5

Actor-critic architecture

Value
function

Environment

Policy

at+1st

Actor

rt

Gradient

Critic TD error

• Clear optimization objective: average or discounted return

• Continual learning

• Handles both discrete and continuous states and actions

ICML Abstraction in RL Workshop, June 2016 6

Option-critic architecture

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

The Option-Critic Architecture

where �QU,w(s,!, a) is the difference between the ap-
proximation and its true target. We can guarantee equal-
ity under two conditions: 1) The learning algorithm under-
lying QU,w minimizes the squared error distance and has
reached convergence 2) The gradient of the function ap-
proximator satisfies the equality:

@

@w
QU,w(s,!, a) =

@

@✓
⇡!,✓ (a | s)

1

⇡!,✓ (a | s)
(8)

This conditions simply mirror their MDP counterpart in the
original policy gradient theorem. The same conditions also
hold for the advantage function, used in the termination
gradient. This time however, we have:

@

@⇠
A⌦,⇠(s,!) =

@

@#
�!,#(s)

For more details, we invite you to consult the supplemen-
tary material.

4. Option-critic architecture

⇡⌦

QU , A⌦

Environment

atst

⇡!0
, �!0

rt

Gradients

Critic
TD error

!t

Options

Behavior policy

Figure 1: The option-critic architecture consists of a set of
options, a policy over them and a critic. Gradients can be
derived from the critic for both the intra-option policies and
termination functions. The execution model is suggested
pictorially by a switch ? over the contacts (. Switching
can only take place when a termination event is encoun-
tered.

The algorithmic implementation of theorems 1 and 2 gives
rise to the option-critic learning architecture (fig. 1), in
reference to the gradient-based actor-critic architectures
(Sutton, 1984; Peters et al., 2005; Degris et al., 2012).
Although option-critic is conceptually identical to actor-
critic, we sought to make a distinction between our holis-
tic approach to learning options and one in which intra-
option policies would be learned with regular policy gradi-
ent methods in a pseudo-reward context.

Since two types of gradients are needed to learn the options,
the critic part of the option-critic architecture consists in

Figure 2: Layout of the four-rooms domain and value func-
tion obtained by option-critic

.

QU (s,!, a) or the negative advantage function (or both).
In this work, we do not seek to use a critic for learning
the policy over options. Note that the problem of learning
a parametrized policy over options can be solved readily
using the policy gradient theorem (see section 2). Using
options has the advantage of reducing a large (potentially
continuous) set of primitive actions to a potentially much
smaller set of discrete options. In this case, the policy over
options can be found using planning methods over the op-
tions models.

5. Experiments
In order to illustrate our approach, we present some pre-
liminary experiments in the four-rooms domain (Sutton et
al., 1999). We fixed the initial state in the upper left cor-
ner and defined a terminal state in the lower right corner.
A penalty of -1 was incurred at every step and for every
action taken in the direction of a wall (resulting in a non-
elastic collision) and a terminal reward of 100 was obtained
upon taking an action leading to the goal state. Primitive
actions were defined as the one-step transitions to the next
cell in each of the four cardinal directions: north, east, west,
south. Any action could fail with probability 0.1, in which
case the agent would simply remain in the same state. The
discount factor for this MDP was set to to 0.9.

We chose to parametrize the intra-option policies using the
softmax distribution:

⇡! (a | s) =
exp✓|

!�(s,a)

P
a0 exp✓|

!�(s,a)

@

@✓
log ⇡! (a | s) = �(s, a)�

X

b

⇡! (b | s)�(s, b)

where � is a state-action basis function. In this experiment,
we used a simple a one-hot encoding of state-action pairs
as basis functions. We defined the termination through the

• Parameterize internal policies and termination conditions

• Policy over options is computed by a separate process (planning, RL, ...)

ICML Abstraction in RL Workshop, June 2016 7

Formulation

• The option-value function of a policy over options πΩ is given by

QΩ(s, ω) =
∑

a

πω(a|s)QU(s, ω, a)

where
QU(s, ω, a) = r(s, a) + γ

∑

s′

P (s′|s, a)U(ω, s′)

• The last quantity is the utility from s′ onwards, given that we arrive in
s′ using ω

U(ω, s′) = (1− βω(s′))QΩ(s′, ω) + βω(s′)VΩ(s′)

• We parameterize the internal policies by θ, as πω,θ, and the termination
conditions by ν, as βω,ν
• Note that θ and ν can be shared over the options!

ICML Abstraction in RL Workshop, June 2016 8

Main result: Gradient updates

• Suppose we want to optimize the expected return: E {QΩ(s, ω)}
• The gradient wrt the internal policy parameters θ is given by:

E
{
∂ log πω,θ(a|s)

∂θ
QU(s, ω, a)

}

This has the usual interpretation: take better primitives more often inside
the option

• The gradient wrt the termination parameters ν is given by:

E
{
−∂βω,ν(s

′)

∂ν
AΩ(s′, ω)

}

where AΩ = QΩ − VΩ is the advantage function

This means that we want to lengthen options that have a large advantage

ICML Abstraction in RL Workshop, June 2016 9

Results: Options transfer

0 500 1000 1500 2000
Episodes

0

100

200

300

400

500

600

St
ep

s

SARSA(0)
AC-PG
OC 4 options
OC 8 options

• 4-rooms domain, tabular representations, value functions learned by Sarsa

• Learning in the first task no slower than using primitives

• Learning once the goal is moved faster with the options

ICML Abstraction in RL Workshop, June 2016 10

Results: Linear function approximation

0 25 50 100 150 200 250
Episodes

−10000

−5000

0

5000

7500
8500

10000

U
nd

isc
ou

nt
ed

R
et

ur
n

4 options
3 options
2 options

• Internal option policies, termination conditions and policy over options
all learned simultaneously
• Only number of options and function approximator are given
• Linear function approximation for the value functions, logistic for the

terminations
• Interesting, extended options are learned

ICML Abstraction in RL Workshop, June 2016 11

Results: Nonlinear function approximation

0 20 40 60 80 100

−20

−10

0

10

20

Option-Critic - testing score
Option-Critic - 10 moving avg
DQN final score

• Atari simulator, Pong, DQN to learn value function over options

• Internal policies for options are given: repeat the same primitive action
(one option per primitive)

• Termination policies represented as a logistic over the DQN features

• Successful simultaneous learning of terminations and option policies

• But, as expected, options shrink over time

ICML Abstraction in RL Workshop, June 2016 12

A new proposal: Deliberation cost

• Assumption: executing a policy is cheap, deciding what to do is expensive

– Many choices may need to be evaluated (branching factor over actions)
– In planning, many next states may need to be considered (branching

factor over states)
– Evaluating the function approximator might be expensive (e.g. if it is

a deep net)

• Deliberation is also expensive in animals:

– Energy consumption (to engage higher-level brain function)
– Missed opportunity cost: thinking too long means action is delayed

ICML Abstraction in RL Workshop, June 2016 13

Example: Immediate cost = number of actions

• With primitive actions: average cost of |A| per time step

• With options only: average cost of |Ω| incurred only when re-deciding
what to do

• If we re-decide on average every kth step, and if |Ω| < k|A|, deliberation
with options is cheaper

• Even if we use both options and primitive actions, average deliberation
is cheaper if |Ω| < (k − 1)|A|

ICML Abstraction in RL Workshop, June 2016 14

Problem formulation

• Let c(s, ω) be the immediate cost of deliberating to choose ω in s

• In the call-and-return model, it is easy to see that we have a value
function that expresses total deliberation cost given by the following
Bellman equation:

Qc(s, ω) = −c(s, ω) +
∑

s′

Pγ(s′|s, ω)
∑

ω′

πΩ(ω′|s′)Qc(s′, ω′)

where Pγ is the discounted transition sub-probability (sums to < γ)

• We can obtain Qc using learning, value iteration etc

• New objective: maximize reward with reasonable effort

max
Ω

E [QΩ(s, ω) + ξQc(s, ω)]

• ξ ≥ 0 controls the trade-off between value and computation effort

ICML Abstraction in RL Workshop, June 2016 15

Interesting properties

• Immediate cost of deliberation is computed based on properties of the
environment

• We do not need pseudo-rewards for sub-goals!

• Value function over options is still obtained accurately

• If ξ = 0 we simply optimize returns as before

ICML Abstraction in RL Workshop, June 2016 16

Illustration: 4 rooms

• If we want to do planning, backing up from multiple states is expensive
so we reflect this in an immediate cost:

c(s, ω) =
∑

s′

IP (s′|s,ω)>ε|Ω(s′)|

• ε ∈ [0, 1] is a constant that can be used to ignore transitions of low
probability

• We use this in the 4 rooms domain, using option-critic to learn the
options and dynamic programming to find πΩ

• Option policies and terminations parameterized as before

ICML Abstraction in RL Workshop, June 2016 17

Illustration: 4 rooms

where ⇠ is a scalar controlling the tradeoff between value and computation cost. Such a tradeoff
between value and control is a central idea in the bounded optimality framework and has been
referred to as the expected value of control [Shenhav et al., 2013].

If the agent has at its disposal both primitive and temporally extended options, as ⇠ goes to 0, the
value of Q⌦ dominates and favours policies which use only primitives. Increasing ⇠ emphasizes the
expense of deliberation and favours recruiting more multi-steps options.

3.3 Optimization
The goal of finding a good set of options can now be specified as optimizing objective (2). Intu-
itively, the optimization involves searching through the space of possible option sets for one which
maximizes QV C . This optimization could be solved in various ways, depending how we define
the space of possible options. We leverage recent results on gradient-based optimization for op-
tions [Bacon and Precup, 2015] to provide an incremental algorithm for constructing options from
data. The option-critic architecture extends the actor-critic architecture [Sutton, 1984] and policy
gradient theorem [Sutton et al., 2000] for the purpose of learning options. An assumption of this
framework is that options policies and termination functions can be parametrized with stochastic
and differentiable functions. If these conditions are met, it provides gradients for any reward-like
objective with respect to the parametrization. We note, however, that the general approach does not
depend on using this type of optimization.

4 Illustration

10≠6 10≠5 10≠4 10≠3 10≠2 10≠1 100

Deliberation tradeo� ›

0

1

2

3

N
um

be
r

of
m

ul
ti-

st
ep

s
op

tio
ns

us
ed

by
fi

�

All options
Only primitives
Policy

(a) Number of options recruited by
⇡⌦ as a function of ⇠

0 10 20 30 40 50
Number of iterations

0

50

100

150

200

250

300

350

R
M

SE

› =0.1
› =0.01
› =0.0001
Primitives

(b) The error in planning with reg-
ularized options decreases faster

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Failure rate

20

40

60

80

100

120

140

R
ep

la
nn

in
g

st
ep

s

› =0.1
› =0.01
› =0.0001
Primitives

(c) Replanning cost for different
perturbation levels

To illustrate these ideas, we conducted preliminary experiments in the four-rooms navigation do-
main [Sutton et al., 1999]. Primitive actions are moves in the four cardinal directions. Any action
fails with probability 0.1, in which case the agent simply remains in the same state. A penalty of -1
is incurred at every time step. We fixed the initial state in the upper left corner and defined a terminal
state in the lower right corner.

In a first experiment, we defined an option for each room, terminating at one of the hallway states.
We learned the option policies (parametrized by the softmax distribution) over 1000 iterations of
the option-critic architecture. We then augmented the set of learned hallway options with primitive
actions and planned an optimal policy by policy iteration. In each step of policy iteration, Q⌦

and Qc are computed by policy evaluation for the current candidate policy over options. Figure 2a
shows that as the cost of deliberation increases, the optimal policy over the joint objective discards
primitive options in favor of the temporally extended (hallway) options, as expected.

We also investigated whether the deliberation cost would impact the structure of the policies when all
components are learned simultaneously: policies within options, termination functions and policy
over options. In fact, we would hope that our objective would provide a speedup when planning
with primitive actions augmented with the learned options. As opposed to the previous experiment,
options were not pre-designed beyond the choice of parametrization: softmax for the policies and
tanh for the terminations. We computed the optimal policy over the MDP by value iteration and
augmented the set of options with primitives. We then computed the root mean square error (RMSE)
to the optimal value function at every planning step over the augmented set of options. When the
deliberation cost is increased through ⇠, we see in Fig. 2b that the structure of the learned options
changes in such a way as to obtain faster planning later on.

3

• Emphasizing deliberation cost, shifts the policy towards using options

• Number of iterations of planning is smaller for higher deliberation cost
penalties

• When options are learned in one task and then used to plan in a different
task, options obtained with deliberation costs are more robust

ICML Abstraction in RL Workshop, June 2016 18

Relationship to other ideas

• Human problem solving: Solway et al (2014) proposed a Bayesian model
selection framework to explain subgoal learning by humans trying to
navigate an unknown map

• Humans found subgoals “around” bottleneck states

• Inspection of their criterion (Bayesian fit to the data) shows strong
similarity with using a cost equal to the branching factor between
options, plus the branching factor within the active option

• Deliberation costs can also explain the value of options for exploration

– Travelling quickly around the environment means values will become
accurate more quickly

– The best action becomes clear earlier, which would make it easier to
choose

ICML Abstraction in RL Workshop, June 2016 19

Conclusions

• Option-critic allows using policy gradient ideas for continual option
construction

• Including deliberation cost as an optimization criterion gives rise to more
robust options

• Lots of things to do:

– More empirical evidence!
– Incorporating initiation sets in option-critic (currently options initiate

at every state)
– Theoretical properties of deliberation cost (relationship to action-gap,

time-regularized options)
– Relationship to transfer learning

ICML Abstraction in RL Workshop, June 2016 20

