Combining State and Temporal Abstraction

George Konidaris gdk@cs.duke.edu

Abstraction

Abstraction

Base control on skills.

- Component of behavior.
- Performs continuous, low-level control.
- Temporal abstraction.

Some evidence that humans organize their behavior this way.

DUKE COMPUTER SCIENCE

Base control on skills.

- Component of behavior.
- Performs continuous, low-level control.
- Temporal abstraction.

Some evidence that humans organize their behavior this way.

Development

DUKE COMPUTER SCIENCE

Base control on skills.

- Component of behavior.
- Performs continuous, low-level control.
- Temporal abstraction.

Some evidence that humans organize their behavior this way.

Development

Specialization

DUKE COMPUTER SCIENCE

Base control on skills.

- Component of behavior.
- Performs continuous, low-level control.
- Temporal abstraction.

Some evidence that humans organize their behavior this way.

Development

Specialization

Simplification

Behavior is modular and compositional.

Behavior is modular and compositional.

Skills are like subroutines.

def abs(x):
if(x > 0):
 return x
else:
 return -x

Skill-Specific Abstractions

Skills should also be abstract.

- Many high-dimensional problems really are highdimensional if you try to solve them monolithically
- Can split into subproblems, each of which support a solution using an abstraction.

[IJCAI 2009]

Skill-Specific Abstractions

Skills should also be abstract.

- Many high-dimensional problems really are highdimensional if you try to solve them monolithically
- Can split into subproblems, each of which support a solution using an abstraction.

[IJCAI 2009]

Skill-Specific Abstractions

Skills should also be abstract.

- Many high-dimensional problems really are highdimensional if you try to solve them monolithically
- Can split into subproblems, each of which support a solution using an abstraction.

Behavior is piecewise low-dimensional.

[IJCAI 2009]

DUKE COMPUTER SCIENCE

Skill

Problem

[Sutton, Precup and Singh 1999]

An option *o* is a policy unit:

- Initiation set
- Termination condition
- Option policy

Formal model of a skill.

An option o is a policy unit:

- Initiation set
- Termination condition
- Option policy

[Sutton, Precup and Singh 1999]

Formal model of a skill.

An option o is a policy unit:

- Initiation set
- Termination condition
- Option policy

[Sutton, Precup and Singh 1999]

Formal model of a skill.

An option o is a policy unit:

- Initiation set
- Termination condition
- Option policy

[Sutton, Precup and Singh 1999]

[IJCAI 2007]

Skill Chaining

[NIPS 2009]

Skill Chaining

[NIPS 2009]

Skill Chaining:

[NIPS 2009]

Skill Chaining: Results

What should options do?

Solway et al. [2014] (following Simsek and Barto [2009]):

- Agent faces distribution over future problems.
- Try to maximize performance averaged over distribution.
- Reasonable to use past problems as sample.

Skill Acquisition

- A robot learning to solve a task
- Extracting skills from solution
- Deploying them in a new task

[AAAI 2011]

Skill Acquisition

- A robot learning to solve a task
- Extracting skills from solution
- Deploying them in a new task

New Task

[AAAI 2011]

Training Room

Training Room

Acquired Skills

Acquired Skills

Median Test Performance Comparison

Without Acquired Skills

With Acquired Skills

Median Test Performance Comparison

Without Acquired Skills

With Acquired Skills

[AAAI 2011]

Summary

Scaled skill acquisition to real robots:

- Skills extracted because they are useful
- Suitable for further learning (individually)
- Suitable for deployment in new problems

Acquired skills can improve a robot's problem-solving abilities.

Skill-Generated Representations

Abstraction with Options

Problem difficulty shouldn't depend on low-level state space.

Abstraction with Options

Problem difficulty shouldn't depend on low-level state space.

Abstraction with Options

Problem difficulty shouldn't depend on low-level state space.

Representation Acquisition:

How should an agent's representations change as it acquires new skills?

Skills Cannot Be The Whole Story

Representation Acquisition:

How should an agent's representations change as it acquires new skills?

More precisely:

- Assume we have skills (SMDP).
- Can we *automatically derive* an appropriate *abstract* representation for planning with those skills?
- SMDP to more abstract MDP.

Results

The answer is yes!

We can write down the <u>right</u> abstract representation for planning using any set of skills.

But the representation depends on properties of the skills.

Formalize the fundamental question a representation needs to answer, and then *explicitly construct* it so that it can answer that question.

What is the fundamental question of probabilistic planning?

[AAAI 2014, IJCAI 2015]

Formalize the fundamental question a representation needs to answer, and then *explicitly construct* it so that it can answer that question.

What is the fundamental question of probabilistic planning?

Given a state and a sequence of options $\{o_1, o_2, \ldots, o_n\}$:

- What is the probability of being able to execute it?
- What is the expected reward?

[AAAI 2014, IJCAI 2015]

Symbols for Planning

A plan $p = \{o_1, ..., o_n\}$ from a state distribution Z is a sequence of actions to be executed from a state drawn from Z.

Starting from the corridor ...

- GoToDoor
- TurnHandle
- PushDoorOpen
- EnterRoom ...

So:

 Which distributions do we need to determine the feasibility of any plan p?

Symbols for Planning

We need one distribution and one operator per skill.

Initiation distribution:

$$P(s \in I_o)$$

Symbols for Planning

We need one symbol and one operator per skill.

Image distribution:

Definition Given a start distribution Z(S) and an option o, we define the probabilistic image of o from Z(S) as:

$$Im(o, Z) = \frac{\int_{S} P(s'|s, o) Z(s) P(I_o|s) \,\mathrm{d}s}{\int_{S} Z(s) P(I_o|s) \,\mathrm{d}s},$$

where $P(s'|s, o) = \int P(s', \tau | s, o) d\tau$, since we are not concerned with the time taken to execute o.

Probabilistic Planning

Must deal with *distributions over states* in the future.

Probabilistic Planning

Must deal with *distributions over states* in the future.

Probabilistic Planning

Must deal with distributions over states in the future.

Subgoal Options

DUKE COMPUTER SCIENCE

Results in a plan graph.

- Node for each option.
- Probability of moving from *i* to *j*

Subgoal Options

Results in a plan graph.

- Node for each option.
- Probability of moving from *i* to *j*

Abstract Subgoal Options

Abstract subgoal option:

- s = [a, b]
- a (mask) is set to some subgoal distribution.
- *b* remains unchanged.

[a, b, c, d, e, f, g, h] $[a, b, c, d, e, \overline{f', g', h'}]$

Abstract Subgoal Options

Abstract subgoal option:

- s = [a, b]
- a (mask) is set to some subgoal distribution.
- *b* remains unchanged.

[a, b, c, d, e, f, g, h] $[a, b, c, d, e, \overline{f', q', h'}]$

Abstract MDPs

Abstract subgoal options: can generate factored MDP

- Vocabulary of state factors + forward model
- Provably sound and complete
- Can discard grounding distributions once done

What is a Symbol?

A (propositional) symbol is a name for a set of low-level states.

Definition A propositional symbol σ_Z is the name associated with a test τ_Z , and the corresponding set of states $Z = \{s \in S \mid \tau_Z(s) = 1\}.$

What is a Symbol?

A (propositional) symbol is a name for a set of low-level states.

Definition A propositional symbol σ_Z is the name associated with a <u>test</u> τ_Z , and the corresponding set of states $Z = \{ s \in S \mid \tau_Z(s) = 1 \}.$ $f(s) = \frac{1}{1 + e^{-\theta \cdot s}}$ AtDesk

Defining a Symbol

What do operations on our symbols mean?

(concrete boolean algebra)

Probabilistic Symbols

Learning symbolic representations

- Execute options and get some data $(s, o, s', r) \ (s, I_o?)$
- For each option:
 - Partition into ~abstract subgoal options
 - For each partitioned option:
 - Probabilistic classifier for init distribution
 - Density estimator for image distribution
 - Regression for reward model

Probabilistic Symbols

				10					
					10 10		N.S.		N. S.
								0	
									N. S.
						100			N. J.
						10			
						N. Cont	N.	N. S.	N.
		Ξ.				2.0		N.	N. C.
	the subject of the su					No.		The second	N. C.
THE P		The second	12 24			No.		The second	

Probabilistic Symbols

PPDDL

learned PPDDL representation

(e) symbol17

(f) symbol20

(g) symbol1

Planning

Goal	Min. Depth	Time (ms)
Obtain Key	14	35
Obtain Treasure	26	64
Treasure & Home	42	181

... using mGPT (Bonet and Geffner, 2005)

Robots

Robots

True Abstraction Hierarchies

Base MDP: $M_0 = \{S_0, A_0, R_0, P_0\}$ Successive MDPs: $M_i = \{S_i, A_i, R_i, P_i\}$

• A_j is a set of options over M_{j-1}

$$M_{j} = \{S_{j}, A_{j}, R_{j}, P_{j}\}$$

options over
$$M_{j-1} = \{S_{j-1}, A_{j-1}, R_{j-1}, P_{j-1}\}$$

Basic assumption of hierarchical RL:

• A_j is a set of options over M_{j-1}

$$M_{j} = \{S_{j}, A_{j}, R_{j}, P_{j}\}$$

options over
$$M_{j-1} = \{S_{j-1}, A_{j-1}, R_{j-1}, P_{j-1}\}$$

Now we know what S_j, R_j, P_j must be.

Factors: Above-Box-Apple Pregrasped Grasped Apple Apple-in-Air Arm above B1, B2

New Skills: Grab-Apple Move Arm to Above Box Drop-Apple

Factors: Grasped/Lifted Apple Arm above B1, B2 Apple in B1, B2

New Skills: MoveAppleTo Factors: Apple in BI, B2

SSL

Succession of MDPs:

$$M_i = \{S_i, A_i, R_i, P_i\}$$

As we go up in the hierarchy:

- Symbols more general (refer to broader distributions)
- Eventually reach "basic" problem description.
- Robot details wash out.

No choice other than the skill discovery algorithm.

A solution at any level *i* is a solution to M_0 .

Consequently, for a given start and goal set, we need to find highest *i* (smallest problem) to plan at.

A solution at any level *i* is a solution to M_0 .

Consequently, for a given start and goal set, we need to find highest *i* (smallest problem) to plan at.

Taxi

Options:

- I. up, down, left, right, pick up, drop off
- 2. drive to each depot, pick up, drop off
- 3. passenger-to-depot

			G
¥		9 1 <	

f	Å
off	
	[IJCAI 2016]

		Hiera	rchical Plan	ning		
Query	Level	Matching	Planning	Total	Base + Options	Base MDP
1	2	<1	<1	<1	770.42	1423.36
2	1	<1	10.55	11.1	1010.85	1767.45
3	0	12.36	1330.38	1342.74	1174.35	1314.94

Summary

Close link between symbolic representation and skills

- Environment + goal + skills specify symbolic representation we need.
- That representation is learnable.

Skills determine the symbols you need to create plans with them.

We can combine skills and high-level representations to achieve true abstraction hierarchies.

Thank you!

Questions?

