Go in numbers

3,000 Years Old

40M Players

10^{170} Positions
Why is Go hard for computers to play?

Game tree complexity = b^d

Brute force search intractable:

1. Search space is huge
2. “Impossible” for computers to evaluate who is winning
Convolutional neural network
Value network

Evaluation

Position

\[v_\theta(s) \]
Policy network

Move probabilities

Position

\(p_{\sigma}(a|s) \)

\(\sigma \)

\(s \)
Exhaustive search
Monte-Carlo rollouts
Reducing depth with value network
Reducing depth with value network
Reducing breadth with policy network
Neural network training pipeline

- Human expert positions
- Supervised Learning policy network
- Reinforcement Learning policy network
- Self-play data
- Value network

Steps:
1. Human expert positions → Classification → Supervised Learning policy network
2. Supervised Learning policy network → Self Play → Reinforcement Learning policy network
3. Reinforcement Learning policy network → Self Play → Self-play data
4. Self-play data → Regression → Value network
Supervised learning of policy networks

Policy network: 12 layer convolutional neural network

Training data: 30M positions from human expert games (KGS 5+ dan)

Training algorithm: maximise likelihood by stochastic gradient descent

\[
\Delta \sigma \propto \frac{\partial \log p_\sigma(a|s)}{\partial \sigma}
\]

Training time: 4 weeks on 50 GPUs using Google Cloud

Results: 57% accuracy on held out test data (state-of-the-art was 44%)
Reinforcement learning of policy networks

Policy network: 12 layer convolutional neural network

Training data: games of self-play between policy network

Training algorithm: maximise wins z by policy gradient reinforcement learning

\[\Delta \sigma \propto \frac{\partial \log p_\sigma(a|s)}{\partial \sigma} z \]

Training time: 1 week on 50 GPUs using Google Cloud

Results: 80% vs supervised learning. Raw network \sim3 amateur dan.
Reinforcement learning of value networks

Value network: 12 layer convolutional neural network

Training data: 30 million games of self-play

Training algorithm: minimise MSE by stochastic gradient descent

\[\Delta \theta \propto \frac{\partial v_\theta(s)}{\partial \theta} (z - v_\theta(s)) \]

Training time: 1 week on 50 GPUs using Google Cloud

Results: First strong position evaluation function - previously thought impossible
Monte-Carlo tree search in AlphaGo: selection

\[Q + u(P) \overset{\text{max}}{\rightarrow} Q + u(P) \]

\[Q + u(P) \overset{\text{max}}{\rightarrow} Q + u(P) \]

\[P \quad \text{prior probability} \]

\[Q \quad \text{action value} \]
Monte-Carlo tree search in AlphaGo: **expansion**
Monte-Carlo tree search in AlphaGo: evaluation

\[v_\theta(\text{state}) \quad \text{Value network} \]
Monte-Carlo tree search in AlphaGo: rollout

v_θ Value network
r Game scorer
Monte-Carlo tree search in AlphaGo: backup

\[Q \quad \text{Action value} \]
\[v_\theta \quad \text{Value network} \]
\[r \quad \text{Game scorer} \]
At last — a computer program that can beat a champion Go player PAGE 404

ALL SYSTEMS GO
Evaluating Nature AlphaGo against computers

494/495 against computer opponents

>75% winning rate with 4 stone handicap

Even stronger using distributed machines
Evaluating Nature AlphaGo against humans

Fan Hui (2p): European Champion 2013 - 2016

Match was played in October 2015

AlphaGo won the match 5-0

First program ever to beat a professional on a full size 19x19 in an even game
Seoul AlphaGo: Improvements

- Improved value network
- Improved policy network
- Improved search
- Improved hardware (TPU vs GPU)
Evaluating Seoul AlphaGo against computers

Beats Nature AlphaGo with 3 to 4 stones handicap

CAUTION: ratings based on self-play results

Beats Nature with 3 to 4 stones handicap
AlphaGo vs Lee Sedol: Game 1
AlphaGo vs Lee Sedol: Game 2
AlphaGo vs Lee Sedol: Game 3
AlphaGo vs Lee Sedol: Game 4
AlphaGo vs Lee Sedol: Game 5
<table>
<thead>
<tr>
<th>Deep Blue</th>
<th>AlphaGo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handcrafted chess knowledge</td>
<td>Knowledge learned from expert games and self-play</td>
</tr>
<tr>
<td>Alpha-beta search guided by heuristic evaluation function</td>
<td>Monte-Carlo search guided by policy and value networks</td>
</tr>
<tr>
<td>200 million positions / second</td>
<td>60,000 positions / second</td>
</tr>
</tbody>
</table>
What’s Next?
With thanks to: Lucas Baker, David Szepesvari, Malcolm Reynolds, Ziyu Wang, Nando De Freitas, Mike Johnson, Ilya Sutskever, Jeff Dean, Mike Marty, Sanjay Ghemawat.